312 research outputs found

    Biphasic toxicodynamic features of some antimicrobial agents on microbial growth: a dynamic mathematical model and its implications on hormesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the present work, we describe a group of anomalous dose-response (DR) profiles and develop a dynamic model that is able to explain them. Responses were obtained from conventional assays of three antimicrobial agents (nisin, pediocin and phenol) against two microorganisms (<it>Carnobacterium piscicola </it>and <it>Leuconostoc mesenteroides</it>).</p> <p>Results</p> <p>Some of these anomalous profiles show biphasic trends which are usually attributed to hormetic responses. But they can also be explained as the result of the time-course of the response from a microbial population with a bimodal distribution of sensitivity to an effector, and there is evidence suggesting this last origin. In light of interest in the hormetic phenomenology and the possibility of confusing it with other phenomena, especially in the bioassay of complex materials we try to define some criteria which allow us to distinguish between <it>sensu stricto </it>hormesis and biphasic responses due to other causes. Finally, we discuss some problems concerning the metric of the dose in connection with the exposure time, and we make a cautionary suggestion about the use of bacteriocins as antimicrobial agents.</p> <p>Conclusions</p> <p>The mathematical model proposed, which combines the basis of DR theory with microbial growth kinetics, can generate and explain all types of anomalous experimental profiles. These profiles could also be described in a simpler way by means of bisigmoidal equations. Such equations could be successfully used in a microbiology and toxicology context to discriminate between hormesis and other biphasic phenomena.</p

    Clinician and Parent Perspectives on Parent and Family Contextual Factors that Impact Community Mental Health Services for Children with Behavior Problems

    Get PDF
    The present study employed qualitative methods to examine multiple stakeholder perspectives regarding the role of parent and family contextual factors on community child mental health treatment for children with behavior problems. Findings suggest agreement between clinicians and parents on the number, types and importance of parent and family factors in children’s mental health services; however, stakeholders differed in reports of which factors were most salient. Specifically, clinicians endorsed most factors as being equally salient, while parents described a few salient factors, with parental stress and inadequate social support being the most frequently discussed. These qualitative data further elucidate the context of community services and have implications for evidence-based practice implementation and improving community care

    Predictors of Treatment Attrition Among an Outpatient Clinic Sample of Youths With Clinically Significant Anxiety

    Get PDF
    Predictors of treatment attrition were examined in a sample of 197 youths (ages 5–18) with clinically-significant symptoms of anxiety seeking psychotherapy services at a community-based outpatient mental health clinic (OMHC). Two related definitions of attrition were considered: (a) clinician-rated dropout (CR), and (b) CR dropout qualified by phase of treatment (pre, early, or late phases) (PT). Across both definitions, rates of attrition in the OMHC sample were higher than those for anxious youths treated in randomized controlled trials, and comorbid depression symptoms predicted dropout, with a higher rate of depressed youths dropping out later in treatment (after 6 sessions). Using the PT definition, minority status also predicted attrition, with more African-American youths lost pre-treatment. Other demographic (age, gender, single parent status) and clinical (externalizing symptoms, anxiety severity) characteristics were not significantly associated with attrition using either definition. Implications for services for anxious youths in public service settings are discussed. Results highlight the important role of comorbid depression in the treatment of anxious youth and the potential value of targeted retention efforts for ethnic minority families early in the treatment process

    Deciphering Biosignatures in Planetary Contexts

    Get PDF
    Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with “abiosignatures” formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the “right” spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights

    Burn injury leads to increased long-term susceptibility to respiratory infection in both mouse models and population studies

    Get PDF
    Background: Burn injury initiates an acute inflammatory response that subsequently drives wound repair. However, acute disruption to the immune response is also common, leading to susceptibility to sepsis and increased morbidity and mortality. Despite increased understanding of the impact of burn injury on the immune system in the acute phase, little is known about longterm consequences of burn injury on immune function. This study was established to determine whether burn injury has long-term clinical impacts on patients' immune responses. Methods: Using a population-based retrospective longitudinal study and linked hospital morbidity and death data from Western Australia, comparative rates of hospitalisation for respiratory infections in burn patients and a non-injured comparator cohort were assessed. In addition, a mouse model of non-severe burn injury was also used in which viral respiratory infection was induced at 4 weeks post-injury using a mouse modified version of the Influenza A virus (H3NN; A/mem/71-a). Results and conclusions: The burn injured cohort contained 14893 adult patients from 1980-2012 after removal of those patients with evidence of smoke inhalation or injury to the respiratory tract. During the study follow-up study a total of 2,884 and 2,625 respiratory infection hospital admissions for the burn and uninjured cohorts, respectively, were identified. After adjusting for covariates, the burn cohort experienced significantly elevated admission rates for influenza and viral pneumonia (IRR, 95%CI: 1.73, 1.27-2.36), bacterial pneumonia (IRR, 95%CI: 2.05, 1.85-2.27) and for other types of upper and lower respiratory infections (IRR, 95% CI: 2.38, 2.09-2.71). In the mouse study an increased viral titre was observed after burn injury, accompanied by a reduced CD8 response and increased NK and NKT cells in the draining lymph nodes. This data suggests burn patients are at long-term increased risk of infection due to sustained modulation of the immune response

    Cancer stem cells in tumor heterogeneity.

    Get PDF
    Cancer cells within a given tumor were long regarded as a largely homogeneous group of cells originating from a common progenitor cell. However, it is increasingly appreciated that there is a considerable heterogeneity within tumors also on the tumor cell level. This heterogeneity extends to virtually all measurable properties of cancer cells, ranging from differentiation state, proliferation rate, migratory and invasive capacity to size, and therapeutic response. Such heterogeneity likely represents a major therapeutic hurdle, but the mechanisms underlying its emergence remain poorly understood and a controversial topic. The cancer stem cell model of tumor progression has gained increasing support during the past several years. In this review, I will discuss some major implications of the cancer stem cell hypothesis on the origins of tumor heterogeneity, focusing both on heterogeneity within the tumor cells proper and on potential transdifferentiation of cancer stem cells into stromal and endothelial lineages, as well as on heterogeneity of the therapeutic response. Evidence for and against a direct and causal role of cancer stem cells in the emergence of tumor heterogeneity will be weighed and alternative explanations for apparently contradictory observations discussed. Finally, I will discuss the potential origins of cancer stem cells and the various implications of origin to the contribution to tumor heterogeneity, and outline some future directions

    Organic carbon content and carbon isotope variations across the Permo-Triassic boundary in the Gartnerkofel-1 borehole, Carnic Alps, Austria

    Get PDF
    The Gartnerkofel borehole is one of the most thoroughly studied and described Permo-Triassic sections in the world. Detailed bulk organic carbon isotope studies show a negative base shift from − 24‰ to − 28‰ in the Latest Permian which latter value persists into the Earliest Triassic after which it decreases slightly to − 26‰. Two strongly negative peaks of > − 38‰ in the Latest Permian and a lesser peak of − 31‰ in the Early Triassic are too negative to be due to a greater proportion of more negative organic matter and must be due to very negative methane effects. The overall change to more negative values across the Bulla/Tesero boundary fits the relative rise in sea level for this transition based on the facies changes. A positive shift in organic carbon isotope values at the Late Permian Event Horizon may be due to an increase in land-derived organic detritus at this level—a feature shown by all Tethyan Permo-Triassic boundary sections though these other sections do not have the same values. Carbonate carbon isotope trends are similar in all sections dropping by 2–3 units across the Permo-Triassic boundary. Gartnerkofel carbonate oxygen values are surprisingly, considering the ubiquitous dolomitization, compatible with values elsewhere and indicate reasonable tropical temperatures of 60 °C in the Latest Permian sabkhas to 20–40 °C in the overlying marine transition beds. Increased land-derived input at the Late Permian Event Horizon may be due to offshore transport by tsunamis whose deposits have been recognized in India at this level

    Credible knowledge: A pilot evaluation of a modified GRADE method using parent-implemented interventions for children with autism

    Get PDF
    Abstract Background Decision-making in child and youth mental health (CYMH) care requires recommendations that are developed through an efficient and effective method and are based on credible knowledge. Credible knowledge is informed by two sources: scientific evidence, and practice-based evidence, that reflects the "real world" experience of service providers. Current approaches to developing these recommendations in relation to CYMH will typically include evidence from one source or the other but do not have an objective method to combine the two. To this end, a modified version of the Grading Recommendations Assessment, Development and Evaluation (GRADE) approach was pilot-tested, a novel method for the CYMH field. Methods GRADE has an explicit methodology that relies on input from scientific evidence as well as a panel of experts. The panel established the quality of evidence and derived detailed recommendations regarding the organization and delivery of mental health care for children and youth or their caregivers. In this study a modified GRADE method was used to provide precise recommendations based on a specific CYMH question (i.e. What is the current credible knowledge concerning the effects of parent-implemented, early intervention with their autistic children?). Results Overall, it appeared that early, parent-implemented interventions for autism result in positive effects that outweigh any undesirable effects. However, as opposed to overall recommendations, the heterogeneity of the evidence required that recommendations be specific to particular interventions, based on the questions of whether the benefits of a particular intervention outweighs its harms. Conclusions This pilot project provided evidence that a modified GRADE method may be an effective and practical approach to making recommendations in CYMH, based on credible knowledge. Key strengths of the process included separating the assessments of the quality of the evidence and the strength of recommendations, transparency in decision-making, and the objectivity of the methods. Most importantly, this method combined the evidence and clinical experience in a more timely, explicit and simple process as compared to previous approaches. The strengths, limitations and modifications of the approach as they pertain to CYMH, are discussed

    Stability of Metabolic Correlations under Changing Environmental Conditions in Escherichia coli – A Systems Approach

    Get PDF
    Background: Biological systems adapt to changing environments by reorganizing their cellular and physiological program with metabolites representing one important response level. Different stresses lead to both conserved and specific responses on the metabolite level which should be reflected in the underlying metabolic network. Methodology/Principal Findings: Starting from experimental data obtained by a GC-MS based high-throughput metabolic profiling technology we here develop an approach that: (1) extracts network representations from metabolic condition-dependent data by using pairwise correlations, (2) determines the sets of stable and condition-dependent correlations based on a combination of statistical significance and homogeneity tests, and (3) can identify metabolites related to the stress response, which goes beyond simple observations about the changes of metabolic concentrations. The approach was tested with Escherichia coli as a model organism observed under four different environmental stress conditions (cold stress, heat stress, oxidative stress, lactose diauxie) and control unperturbed conditions. By constructing the stable network component, which displays a scale free topology and small-world characteristics, we demonstrated that: (1) metabolite hubs in this reconstructed correlation networks are significantly enriched for those contained in biochemical networks such as EcoCyc, (2) particular components of the stable network are enriched for functionally related biochemical pathways, and (3) independently of the response scale, based on their importance in the reorganization of the correlation network a set of metabolites can be identified which represent hypothetical candidates for adjusting to a stress-specific response. Conclusions/Significance: Network-based tools allowed the identification of stress-dependent and general metabolic correlation networks. This correlation-network-based approach does not rely on major changes in concentration to identify metabolites important for stress adaptation, but rather on the changes in network properties with respect to metabolites. This should represent a useful complementary technique in addition to more classical approaches

    Promotion of plasma membrane repair by vitamin E

    Get PDF
    Severe vitamin E deficiency results in lethal myopathy in animal models. Membrane repair is an important myocyte response to plasma membrane disruption injury as when repair fails, myocytes die and muscular dystrophy ensues. Here we show that supplementation of cultured cells with α-tocopherol, the most common form of vitamin E, promotes plasma membrane repair. Conversely, in the absence of α-tocopherol supplementation, exposure of cultured cells to an oxidant challenge strikingly inhibits repair. Comparative measurements reveal that, to promote repair, an anti-oxidant must associate with membranes, as α-tocopherol does, or be capable of α-tocopherol regeneration. Finally, we show that myocytes in intact muscle cannot repair membranes when exposed to an oxidant challenge, but show enhanced repair when supplemented with vitamin E. Our work suggests a novel biological function for vitamin E in promoting myocyte plasma membrane repair. We propose that this function is essential for maintenance of skeletal muscle homeostasis
    corecore