48 research outputs found

    First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA

    Get PDF
    The NOvA experiment has seen a 4.4σ signal of ν̄e appearance in a 2 GeV ν̄μ beam at a distance of 810 km. Using 12.33×1020 protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν̄μ→ν̄e candidates with a background of 10.3 and 102 ν̄μ→ν̄μ candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm322|=2.48-0.06+0.11×10-3 eV2/c4 and sin2θ23 in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δCP=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ23 values in the upper octant by 1.6σ

    DarkSide-50 532-day dark matter search with low-radioactivity argon

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOThe DarkSide-50 direct-detection dark matter experiment is a dual-phase argon time projection chamber operating at Laboratori Nazionali del Gran Sasso. This paper reports on the blind analysis of a (16 660 +/- 270) kg d exposure using a target of low-radioactivity argon extracted from underground sources. We find no events in the dark matter selection box and set a 90% C. L. upper limit on the dark matter-nucleon spin-independent cross section of 1.14 x 10(-44) cm(2) (3.78 x 10(-44) cm(2), 3.43 x 10(-43) cm(2)) for a WIMP mass of 100 GeV/c(2) (1 TeV/c(2), 10 TeV/c(2)).9810117FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2016/09084-0Agências de fomento estrangeiras apoiaram essa pesquisa, mais informações acesse artig

    First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA

    Get PDF
    The NOvA experiment has seen a 4.4 σ signal of ¯ ν e appearance in a 2 GeV ¯ ν μ beam at a distance of 810 km. Using 12.33 × 10 20 protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ¯ ν μ → ¯ ν e candidates with a background of 10.3 and 102 ¯ ν μ → ¯ ν μ candidates. This new antineutrino data are combined with neutrino data to measure the parameters | Δ m 2 32 | = 2.4 8 + 0.11 − 0.06 × 10 − 3     eV 2 / c 4 and sin 2 θ 23 in the ranges from (0.53–0.60) and (0.45–0.48) in the normal neutrino mass hierarchy. The data exclude most values near δ C P = π / 2 for the inverted mass hierarchy by more than 3 σ and favor the normal neutrino mass hierarchy by 1.9 σ and θ 23 values in the upper octant by 1.6 σ

    Measurement of neutrino-induced neutral-current coherent π0 production in the NOvA near detector

    Get PDF
    The cross section of neutrino-induced neutral-current coherent π0 production on a carbon-dominated target is measured in the NOvA near detector. This measurement uses a narrow-band neutrino beam with an average neutrino energy of 2.7 GeV, which is of interest to ongoing and future long-baseline neutrino oscillation experiments. The measured, flux-averaged cross section is σ=13.8±0.9(stat)±2.3(syst)×10−40cm2/nucleus, consistent with model prediction. This result is the most precise measurement of neutral-current coherent π0 production in the few-GeV neutrino energy region

    Constraints on sub-GeV dark-matter-electron scattering from the DarkSide-50 experiment

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOWe present new constraints on sub-GeV dark-matter particles scattering off electrons based on 6780.0 kg d of data collected with the DarkSide-50 dual-phase argon time projection chamber. This analysis uses electroluminescence signals due to ionized electrons extracted from the liquid argon target. The detector has a very high trigger probability for these signals, allowing for an analysis threshold of three extracted electrons, or approximately 0.05 keVee. We calculate the expected recoil spectra for dark matterelectron scattering in argon and, under the assumption of momentum-independent scattering, improve upon existing limits from XENON10 for dark-matter particles with masses between 30 and 100 MeV/c(2).1211117FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2016/09084-0Agências de fomento estrangeiras apoiaram essa pesquisa, mais informações acesse artig

    Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel

    Full text link
    Dark matter lighter than 10 GeV/c2^2 encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino floor for GeV-scale masses and significant sensitivity down to 10 MeV/c2^2 considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector's sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties

    SiPM-matrix readout of two-phase argon detectors using electroluminescence in the visible and near infrared range

    Get PDF
    Proportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter searches to record (in the gas phase) the ionization signal induced by particle scattering in the liquid phase. The “standard” EL mechanism is considered to be due to noble gas excimer emission in the vacuum ultraviolet (VUV). In addition, there are two alternative mechanisms, producing light in the visible and near infrared (NIR) ranges. The first is due to bremsstrahlung of electrons scattered on neutral atoms (“neutral bremsstrahlung”, NBrS). The second, responsible for electron avalanche scintillation in the NIR at higher electric fields, is due to transitions between excited atomic states. In this work, we have for the first time demonstrated two alternative techniques of the optical readout of two-phase argon detectors, in the visible and NIR range, using a silicon photomultiplier matrix and electroluminescence due to either neutral bremsstrahlung or avalanche scintillation. The amplitude yield and position resolution were measured for these readout techniques, which allowed to assess the detection threshold for electron and nuclear recoils in two-phase argon detectors for dark matter searches. To the best of our knowledge, this is the first practical application of the NBrS effect in detection science

    Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam

    Full text link
    corecore