958 research outputs found

    Slower recovery in space before collapse of connected populations

    Get PDF
    Slower recovery from perturbations near a tipping point and its indirect signatures in fluctuation patterns have been suggested to foreshadow catastrophes in a wide variety of systems. Recent studies of populations in the field and in the laboratory have used time-series data to confirm some of the theoretically predicted early warning indicators, such as an increase in recovery time or in the size and timescale of fluctuations. However, the predictive power of temporal warning signals is limited by the demand for long-term observations. Large-scale spatial data are more accessible, but the performance of warning signals in spatially extended systems needs to be examined empirically. Here we use spatially extended yeast populations, an experimental system with a fold bifurcation (tipping point), to evaluate early warning signals based on spatio-temporal fluctuations and to identify a novel spatial warning indicator. We found that two leading indicators based on fluctuations increased before collapse of connected populations; however, the magnitudes of the increases were smaller than those observed in isolated populations, possibly because local variation is reduced by dispersal. Furthermore, we propose a generic indicator based on deterministic spatial patterns, which we call ‘recovery length’. As the spatial counterpart of recovery time, recovery length is the distance necessary for connected populations to recover from spatial perturbations. In our experiments, recovery length increased substantially before population collapse, suggesting that the spatial scale of recovery can provide a superior warning signal before tipping points in spatially extended systems.United States. National Institutes of Health (NIH R00 GM085279-02)United States. National Institutes of Health (NIH DP2)Alfred P. Sloan FoundationNational Science Foundation (U.S.

    Ecological equivalence: a realistic assumption for niche theory as a testable alternative to neutral theory

    Get PDF
    Hubbell's 2001 neutral theory unifies biodiversity and biogeography by modelling steady-state distributions of species richness and abundances across spatio-temporal scales. Accurate predictions have issued from its core premise that all species have identical vital rates. Yet no ecologist believes that species are identical in reality. Here I explain this paradox in terms of the ecological equivalence that species must achieve at their coexistence equilibrium, defined by zero net fitness for all regardless of intrinsic differences between them. I show that the distinction of realised from intrinsic vital rates is crucial to evaluating community resilience. An analysis of competitive interactions reveals how zero-sum patterns of abundance emerge for species with contrasting life-history traits as for identical species. I develop a stochastic model to simulate community assembly from a random drift of invasions sustaining the dynamics of recruitment following deaths and extinctions. Species are allocated identical intrinsic vital rates for neutral dynamics, or random intrinsic vital rates and competitive abilities for niche dynamics either on a continuous scale or between dominant-fugitive extremes. Resulting communities have steady-state distributions of the same type for more or less extremely differentiated species as for identical species. All produce negatively skewed log-normal distributions of species abundance, zero-sum relationships of total abundance to area, and Arrhenius relationships of species to area. Intrinsically identical species nevertheless support fewer total individuals, because their densities impact as strongly on each other as on themselves. Truly neutral communities have measurably lower abundance/area and higher species/abundance ratios. Neutral scenarios can be parameterized as null hypotheses for testing competitive release, which is a sure signal of niche dynamics. Ignoring the true strength of interactions between and within species risks a substantial misrepresentation of community resilience to habitat los

    Functional Locomotor Consequences of Uneven Forefeet for Trot Symmetry in Individual Riding Horses

    Get PDF
    ABSTRACT: Left-right symmetrical distal limb conformation can be an important prerequisite for a successful performance, and it is often hypothesized that asymmetric or uneven feet are important enhancing factors for the development of lameness. On a population level, it has been demonstrated that uneven footed horses are retiring earlier from elite level competition, but the biomechanical consequences are not yet known. The objectives of this study were to compare the functional locomotor asymmetries of horses with uneven to those with even feet. Hoof kinetics and distal limb kinematics were collected from horses (n = 34) at trot. Dorsal hoof wall angle was used to classify horses as even or uneven (1.5° difference between forefeet respectively) and individual feet as flat (55°). Functional kinetic parameters were compared between even and uneven forefeet using MANOVA followed by ANOVA. The relative influences of differences in hoof angle between the forefeet and of absolute hoof angle on functional parameters were analysed using multiple regression analysis (P<0.05). In horses with uneven feet, the side with the flatter foot showed a significantly larger maximal horizontal braking and vertical ground reaction force, a larger vertical fetlock displacement and a suppler fetlock spring. The foot with a steeper hoof angle was linearly correlated with an earlier braking-propulsion transition. The conformational differences between both forefeet were more important for loading characteristics than the individual foot conformation of each individual horse. The differences in vertical force and braking force between uneven forefeet could imply either an asymmetrical loading pattern without a pathological component or a subclinical lameness as a result of a pathological development in the steeper foot

    Dietary polyunsaturated fat intake is associated with low-density lipoprotein size, but not with susceptibility to oxidation in subjects with impaired glucose metabolism and type II diabetes: the Hoorn study

    Get PDF
    OBJECTIVE: A high monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) intake is associated with lower plasma low-density lipoprotein (LDL)-cholesterol. However, PUFA may increase the susceptibility of LDL to undergo oxidative modifications. The aim of this study was to analyze the association of habitual dietary fat intake with LDL size and oxidizability. DESIGN: Cross-sectional. SETTING: Cohort study. SUBJECTS: Seven hundred and fifty-eight subjects with normal, impaired glucose metabolism and type II diabetes. INTERVENTIONS: Mean LDL size was measured by high-performance gel-filtration chromatography. In vitro oxidizability of LDL was determined by measuring lag time, reflecting the resistance of LDL to copper-induced oxidation. Information about dietary fat intake was obtained by a validated food frequency questionnaire. RESULTS: PUFA intake (energy percent) was significantly and negatively associated with LDL size in subjects with type II diabetes (standardized beta (95% confidence interval) -0.17 (-0.28;-0.06)) and impaired glucose metabolism - although not statistically significant - (-0.09 (-0.24;0.05)), but not in subjects with normal glucose metabolism (0.01 (-0.10;0.12)) (P-value for interaction=0.02). No significant associations were observed for total, saturated fat and MUFA intake with LDL size. Intake of fat was associated with lag time; however, the small magnitude of the associations suggested that the composition of dietary fat is not a major factor affecting lag time. The same association with lag time was observed in all three glucose metabolism categories. CONCLUSIONS: In individuals with abnormal glucose metabolism, higher PUFA intake is associated with smaller LDL particle size, but does not alter the susceptibility of LDL to in vitro oxidation. SPONSORSHIP: Dutch Diabetes Research Foundation, and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)

    Lung resistance-related protein as a predictor of clinical outcome in advanced testicular germ-cell tumours

    Get PDF
    This study was undertaken to investigate the expression and predictive value for outcome of multidrug resistance-associated (MDR) proteins P-glycoprotein (Pgp), MRP1, BCRP, and LRP, in advanced testicular germ-cell tumours (TGCT). Paraffin-embedded sections from 56 previously untreated patients with metastatic TGCT were immunostained for Pgp, MRP1, BCRP, and LRP. All patients received platinum-based chemotherapy after orchidectomy. Immunostaining was related to clinicopathological parameters, response to chemotherapy, and outcome. Strong and intermediate expressions of the different MDR-related proteins were: 27 and 41% (Pgp), 54 and 37% (MRP1), 86 and 7% (BCRP), and 14 and 29% (LRP). P-glycoprotein and MRP1 associated, respectively, to low AFP (P=0.026) and high LDH levels (P=0.014), whereas LRP expression associated with high beta-hCG levels (P=0.003) and stage IV tumours (P=0.029). No correlation was found between Pgp, MRP1, and BCRP expression and response to chemotherapy and survival. In contrast, patients with LRP-positive tumours (strong or intermediate expression) had shorter progression-free (P=0.0006) and overall survival (P=0.0116) than LRP-negative patients, even after individual log-rank adjustments by statistically associated variables. Our data suggest that a positive LRP immunostaining at the time of diagnosis in metastatic TGCT is associated with an adverse clinical outcome

    Multiple Imputation Ensembles (MIE) for dealing with missing data

    Get PDF
    Missing data is a significant issue in many real-world datasets, yet there are no robust methods for dealing with it appropriately. In this paper, we propose a robust approach to dealing with missing data in classification problems: Multiple Imputation Ensembles (MIE). Our method integrates two approaches: multiple imputation and ensemble methods and compares two types of ensembles: bagging and stacking. We also propose a robust experimental set-up using 20 benchmark datasets from the UCI machine learning repository. For each dataset, we introduce increasing amounts of data Missing Completely at Random. Firstly, we use a number of single/multiple imputation methods to recover the missing values and then ensemble a number of different classifiers built on the imputed data. We assess the quality of the imputation by using dissimilarity measures. We also evaluate the MIE performance by comparing classification accuracy on the complete and imputed data. Furthermore, we use the accuracy of simple imputation as a benchmark for comparison. We find that our proposed approach combining multiple imputation with ensemble techniques outperform others, particularly as missing data increases

    Lack of Relationship Between Chronic Upper Abdominal Symptoms and Gastric Function in Functional Dyspepsia

    Get PDF
    To determine the relationship between gastric function and upper abdominal sensations we studied sixty FD patients (43 female). All patients underwent three gastric function tests: 13C octanoic gastric emptying test, three-dimensional ultrasonography (proximal and distal gastric volume), and the nutrient drink test. Upper abdominal sensations experienced in daily life were scored using questionnaires. Impaired proximal gastric relaxation (23%) and a delayed gastric emptying (33%) are highly prevalent in FD patients; however, only a small overlap exists between the two pathophysiologic disorders (5%). No relationship was found between chronic upper abdominal symptoms and gastric function (proximal gastric relaxation, gastric emptying rate, or drinking capacity) (all P > 0.01). Proximal gastric relaxation or gastric emptying rate had no effect on maximum drinking capacity (P > 0.01). The lack of relationship between chronic upper abdominal sensations and gastric function questions the role of these pathophysiologic mechanisms in the generation of symptoms

    Genetic Landscape of Epilepsy of Infancy with Migrating Focal Seizures

    Get PDF
    OBJECTIVE: Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the most severe developmental and epileptic encephalopathies. We delineate the genetic causes and genotype-phenotype correlations of a large EIMFS cohort. METHODS: Phenotypic and molecular data were analyzed on patients recruited through an international collaborative study. RESULTS: We ascertained 135 patients from 128 unrelated families. Ninety-three of 135 (69%) had causative variants (42/55 previously reported) across 23 genes, including 9 novel EIMFS genes: de novo dominant GABRA1, GABRB1, ATP1A3; X-linked CDKL5, PIGA; and recessive ITPA, AIMP1, KARS, WWOX. The most frequently implicated genes were KCNT1 (36/135, 27%) and SCN2A (10/135, 7%). Mosaicism occurred in 2 probands (SCN2A, GABRB3) and 3 unaffected mothers (KCNT1). Median age at seizure onset was 4 weeks, with earlier onset in the SCN2A, KCNQ2, and BRAT1 groups. Epileptic spasms occurred in 22% patients. A total of 127 patients had severe to profound developmental impairment. All but 7 patients had ongoing seizures. Additional features included microcephaly, movement disorders, spasticity, and scoliosis. Mortality occurred in 33% at median age 2 years 7 months. INTERPRETATION: We identified a genetic cause in 69% of patients with EIMFS. We highlight the genetic heterogeneity of EIMFS with 9 newly implicated genes, bringing the total number to 33. Mosaicism was observed in probands and parents, carrying critical implications for recurrence risk. EIMFS pathophysiology involves diverse molecular processes from gene and protein regulation to ion channel function and solute trafficking. This article is protected by copyright. All rights reserved
    • …
    corecore