80 research outputs found

    Preparation and Physicochemical Properties of 10-Hydroxycamptothecin (HCPT) Nanoparticles by Supercritical Antisolvent (SAS) Process

    Get PDF
    The goal of the present work was to study the feasibility of 10-hydroxycamptothecin (HCPT) nanoparticle preparation using supercritical antisolvent (SAS) precipitation. The influences of various experimental factors on the mean particle size (MPS) of HCPT nanoparticles were investigated. The optimum micronization conditions are determined as follows: HCPT solution concentration 0.5 mg/mL, the flow rate ratio of CO2 and HCPT solution 19.55, precipitation temperature 35 °C and precipitation pressure 20 MPa. Under the optimum conditions, HCPT nanoparticles with a MPS of 180 ± 20.3 nm were obtained. Moreover, the HCPT nanoparticles obtained were characterized by Scanning electron microscopy, Dynamic light scattering, Fourier-transform infrared spectroscopy, High performance liquid chromatography-mass spectrometry, X-ray diffraction and Differential scanning calorimetry analyses. The physicochemical characterization results showed that the SAS process had not induced degradation of HCPT. Finally, the dissolution rates of HCPT nanoparticles were investigated and the results proved that there is a significant increase in dissolution rate compared to unprocessed HCPT

    Overview of the Role of Environmental Factors in Neurodevelopmental Disorders

    Get PDF
    Evidence implicates environmental factors in the pathogenesis of diverse complex neurodevelopmental disorders. However, the identity of specific environmental chemicals that confer risk for these disorders, and the mechanisms by which environmental chemicals interact with genetic susceptibilities to influence adverse neurodevelopmental outcomes remain significant gaps in our understanding of the etiology of most neurodevelopmental disorders. It is likely that many environmental chemicals contribute to the etiology of neurodevelopmental disorders but their influence depends on the genetic substrate of the individual. Research into the pathophysiology and genetics of neurodevelopmental disorders may inform the identification of environmental susceptibility factors that promote adverse outcomes in brain development. Conversely, understanding how low-level chemical exposures influence molecular, cellular, and behavioral outcomes relevant to neurodevelopmental disorders will provide insight regarding gene-environment interactions and possibly yield novel intervention strategies

    Structural insights into Ca2+-activated long-range allosteric channel gating of RyR1

    Get PDF
    Ryanodine receptors (RyRs) are a class of giant ion channels with molecular mass over 2.2 mega-Daltons. These channels mediate calcium signaling in a variety of cells. Since more than 80% of the RyR protein is folded into the cytoplasmic assembly and the remaining residues form the transmembrane domain, it has been hypothesized that the activation and regulation of RyR channels occur through an as yet uncharacterized long-range allosteric mechanism. Here we report the characterization of a Ca2+-activated open-state RyR1 structure by cryo-electron microscopy. The structure has an overall resolution of 4.9 angstrom and a resolution of 4.2 angstrom for the core region. In comparison with the previously determined apo/closed-state structure, we observed long-range allosteric gating of the channel upon Ca2+ activation. In-depth structural analyses elucidated a novel channel-gating mechanism and a novel ion selectivity mechanism of RyR1. Our work not only provides structural insights into the molecular mechanisms of channel gating and regulation of RyRs, but also sheds light on structural basis for channel-gating and ion selectivity mechanisms for the six-transmembrane-helix cation channel family.Strategic Priority Research Program of Chinese Academy of Sciences [XDB08030202]; National Basic Research Program (973 Program); Ministry of Science & Technology of China [2012CB917200, 2014CB910700]; National Natural Science Foundation of China [31270768]; Ministry of Education of China (111 Program China)SCI(E)PubMed中国科技核心期刊(ISTIC)[email protected]; [email protected]

    Correlations Between Gene Expression and Mercury Levels in Blood of Boys With and Without Autism

    Get PDF
    Gene expression in blood was correlated with mercury levels in blood of 2- to 5-year-old boys with autism (AU) compared to age-matched typically developing (TD) control boys. This was done to address the possibility that the two groups might metabolize toxicants, such as mercury, differently. RNA was isolated from blood and gene expression assessed on whole genome Affymetrix Human U133 expression microarrays. Mercury levels were measured using an inductively coupled plasma mass spectrometer. Analysis of covariance (ANCOVA) was performed and partial correlations between gene expression and mercury levels were calculated, after correcting for age and batch effects. To reduce false positives, only genes shared by the ANCOVA models were analyzed. Of the 26 genes that correlated with mercury levels in both AU and TD boys, 11 were significantly different between the groups (P(Diagnosis*Mercury) ≤ 0.05). The expression of a large number of genes (n = 316) correlated with mercury levels in TD but not in AU boys (P ≤ 0.05), the most represented biological functions being cell death and cell morphology. Expression of 189 genes correlated with mercury levels in AU but not in TD boys (P ≤ 0.05), the most represented biological functions being cell morphology, amino acid metabolism, and antigen presentation. These data and those in our companion study on correlation of gene expression and lead levels show that AU and TD children display different correlations between transcript levels and low levels of mercury and lead. These findings might suggest different genetic transcriptional programs associated with mercury in AU compared to TD children

    Ryanodine sensitizes the cardiac Ca(2+) release channel (ryanodine receptor isoform 2) to Ca(2+) activation and dissociates as the channel is closed by Ca(2+) depletion

    No full text
    In single-channel recordings, the rabbit cardiac Ca(2+) release channel (RyR2) is converted to a fully open subconductance state with about 50% of full conductance by micromolar concentrations of ryanodine. At +30 mV, corresponding to a luminal to cytoplasmic cation current, the probability of opening (P(o)) of ryanodine-modified channels was only marginally altered at pCa 10 (pCa = −log(10) Ca concentration). However, at −30 mV, the P(o) was highly sensitive to Ca(2+) added to the cis (cytoplasmic) side and, at pCa 10, was reduced to less than 0.27. The EC(50) value for channel opening was about pCa 8. No significant Ca(2+) inactivation was observed for ryanodine-modified channels at either −30 mV or +30 mV. The opening of unmodified Ca(2+) channels is Ca(2+) sensitive, with an EC(50) value of about pCa 6 (two orders of magnitude less sensitive than ryanodine-modified channels) and IC(50) values of pCa 2.2 at −30 mV and 2.5 at +30 mV. Mg(2+) decreased the P(o) of ryanodine-modified channels at low Ca(2+) concentrations at both −30 and +30 mV. Caffeine, ATP, and ruthenium red were modulators of the P(o) of ryanodine-modified channels. In a [(3)H]ryanodine binding assay, [(3)H]ryanodine dissociation from the high-affinity binding site was found to be Ca(2+) sensitive, with an IC(50) of pCa 7.1. High concentrations of unlabeled ryanodine prevented [(3)H]ryanodine dissociation, but ruthenium red accelerated dissociation. These results suggest that ryanodine sensitizes Ca(2+) activation of the Ca(2+) release channel and desensitizes Ca(2+) inactivation through an allosteric interaction. [(3)H]Ryanodine dissociates from the high-affinity site when the channel is closed by removal of Ca(2+), implying that high-affinity ryanodine and Ca(2+) binding sites are linked through either short- or long-range interactions, probably involving conformational changes

    Fingerprint Indexing Based on Composite Set of Reduced SIFT Features

    No full text
    Most of current fingerprint indexing schemes utilize features based on global textures and minutiae structures. To extend the existing technology of feature extraction, this paper proposes a new fingerprint indexing and retrieval scheme using scale invariant feature transformation (SIFT), which has been widely used in generic image retrieval. With slight loss in effectiveness, we reduce the number of features generated from one fingerprint for efficiency. To cope with the uncertainty of acquisition (e.g. partialness, distortion), we use a composite set of features to form multiple impressions for the fingerprint representation. In the index construction phase, the use of locality-sensitive hashing (LSH) allows us to perform similarity queries by only examining a small fraction of the database. Experiments on database FVC2000 and FVC2002 show the effectiveness of our proposed scheme.Computer Science, Artificial IntelligenceCPCI-S(ISTP)

    Conformational activation of Ca(2+) entry by depolarization of skeletal myotubes

    No full text
    Store-operated Ca(2+) entry (SOCE) occurs in diverse cell types in response to depletion of Ca(2+) within the endoplasmic/sarcoplasmic reticulum and functions both to refill these stores and to shape cytoplasmic Ca(2+) transients. Here we report that in addition to conventional SOCE, skeletal myotubes display a physiological mechanism that we term excitation-coupled Ca(2+) entry (ECCE). ECCE is rapidly initiated by membrane depolarization. Like excitation-contraction coupling, ECCE is absent in both dyspedic myotubes that lack the skeletal muscle-type ryanodine receptor 1 and dysgenic myotubes that lack the dihydropyridine receptor (DHPR), and is independent of the DHPR l-type Ca(2+) current. Unlike classic SOCE, ECCE does not depend on sarcoplasmic reticulum Ca(2+) release. Indeed, ECCE produces a large Ca(2+) entry in response to physiological stimuli that do not produce substantial store depletion and depends on interactions among three different Ca(2+) channels: the DHPR, ryanodine receptor 1, and a Ca(2+) entry channel with properties corresponding to those of store-operated Ca(2+) channels. ECCE may provide a fundamental means to rapidly maintain Ca(2+) stores and control important aspects of Ca(2+) signaling in both muscle and nonmuscle cells
    corecore