69 research outputs found

    Tensile Strength of Geological Discontinuities Including Incipient Bedding, Rock Joints and Mineral Veins

    Get PDF
    Geological discontinuities have a controlling influence for many rock-engineering projects in terms of strength, deformability and permeability, but their characterisation is often very difficult. Whilst discontinuities are often modelled as lacking any strength, in many rock masses visible rock discontinuities are only incipient and have tensile strength that may approach and can even exceed that of the parent rock. This fact is of high importance for realistic rock mass characterisation but is generally ignored. It is argued that current ISRM and other standards for rock mass characterisation, as well as rock mass classification schemes such as RMR and Q, do not allow adequately for the incipient nature of many rock fractures or their geological variability and need to be revised, at least conceptually. This paper addresses the issue of the tensile strength of incipient discontinuities in rock and presents results from a laboratory test programme to quantify this parameter. Rock samples containing visible, natural incipient discontinuities including joints, bedding, and mineral veins have been tested in direct tension. It has been confirmed that such discontinuities can have high tensile strength, approaching that of the parent rock. Others are, of course, far weaker. The tested geological discontinuities all exhibited brittle failure at axial strain less than 0.5 % under direct tension conditions. Three factors contributing to the tensile strength of incipient rock discontinuities have been investigated and characterised. A distinction is made between sections of discontinuity that are only partially developed, sections of discontinuity that have been locally weathered leaving localised residual rock bridges and sections that have been ‘healed’ through secondary cementation. Tests on bedding surfaces within sandstone showed that tensile strength of adjacent incipient bedding can vary considerably. In this particular series of tests, values of tensile strength for bedding planes ranged from 32 to 88 % of the parent rock strength (intact without visible discontinuities), and this variability could be attributed to geological factors. Tests on incipient mineral veins also showed considerable scatter, the strength depending upon the geological nature of vein development as well as the presence of rock bridges. As might be anticipated, tensile strength of incipient rock joints decreases with degree of weathering as expressed in colour changes adjacent to rock bridges. Tensile strengths of rock bridges (lacking marked discolouration) were found to be similar to that of the parent rock. It is concluded that the degree of incipiency of rock discontinuities needs to be differentiated in the process of rock mass classification and engineering design and that this can best be done with reference to the tensile strength relative to that of the parent rock. It is argued that the science of rock mass characterisation may be advanced through better appreciation of geological history at a site thereby improving the process of prediction and extrapolating properties

    Investigating the use of 3-D full-waveform inversion to characterize the host rock at a geological disposal site

    Get PDF
    The U.K. government has a policy to dispose of higher activity radioactive waste in a geological disposal facility (GDF), which will have multiple protective barriers to keep the waste isolated and to ensure no harmful quantities of radioactivity are able to reach the surface. Currently no specific GDF site in the United Kingdom has been chosen but, once it has, the site is likely to be investigated using seismic methods. In this study, we explore whether 3-D full-waveform inversion (FWI) of seismic data can be used to map changes in physical properties caused by the construction of the site, specifically tunnel-induced fracturing. We have built a synthetic model for a GDF located in granite at 1000 m depth below the surface, since granite is one of the candidate host rocks due to its high strength and low permeability and the GDF could be located at such a depth. We use an effective medium model to predict changes in P-wave velocity associated with tunnel-induced fracturing, within the spatial limits of an excavated disturbed zone (EdZ), modelled here as an increase in fracture density around the tunnel. We then generate synthetic seismic data using a number of different experimental geometries to investigate how they affect the performance of FWI in recovering subsurface P-wave velocity structure. We find that the location and velocity of the EdZ are recovered well, especially when data recorded on tunnel receivers are included in the inversion. Our findings show that 3-D FWI could be a useful tool for characterizing the subsurface and changes in fracture properties caused during construction, and make a suite of suggestions on how to proceed once a potential GDF site has been identified and the geological setting is known

    Time-dependent rockmasses and implications associated with tunnelling

    No full text
    The time-dependent behaviour of an elasto-visco-elastic medium is investigated and examined further. Numerical analysis of an advancing tunnel is performed via isotropic axisymmetric finite difference modelling (FLAC by Itasca, 2011) to examine the interaction of tunnel advance and instantaneous closure, short to medium term primary creep and longterm secondary creep. In addition, a new approach to calculate LDPs is presented taking into account both the tunnel advance and the time-dependent rockmass behaviour

    Nanocluster superstructures assembled via surface ligand switching at high temperature

    No full text
    Abstract: Superstructures with nanoscale building blocks, when coupled with precise control of the constituent units, open opportunities in rationally designing and manufacturing desired functional materials. Yet, synthetic strategies for the large-scale production of superstructures are scarce. We report a scalable and generalized approach to synthesizing superstructures assembled from atomically precise Ce24O28(OH)8 and other rare-earth metal-oxide nanoclusters alongside a detailed description of the self-assembly mechanism. Combining operando small-angle X-ray scattering, ex situ molecular and structural characterizations, and molecular dynamics simulations indicates that a high-temperature ligand-switching mechanism, from oleate to benzoate, governs the formation of the nanocluster assembly. The chemical tuning of surface ligands controls superstructure disassembly and reassembly, and furthermore, enables the synthesis of multicomponent superstructures. This synthetic approach, and the accurate mechanistic understanding, are promising for the preparation of superstructures for use in electronics, plasmonics, magnetics and catalysis. Synthesizing superstructures with precisely controlled nanoscale building blocks is challenging. Here the assembly of superstructures is reported from atomically precise Ce24O28(OH)8 and other rare-earth metal-oxide nanoclusters and their multicomponent combinations. A high-temperature ligand-switching mechanism controls the self-assembly
    • …
    corecore