1,875 research outputs found

    Leptogenesis, Dark Matter and Higgs Phenomenology at TeV

    Get PDF
    We propose an interesting model of neutrino masses to realize leptogenesis and dark matter at the TeV scale. A real scalar is introduced to naturally realize the Majorana masses of the right-handed neutrinos. We also include a new Higgs doublet that contributes to the dark matter of the universe. The neutrino masses come from the vacuum expectation value of the triplet Higgs scalar. The right-handed neutrinos are not constrained by the neutrino masses and hence they could generate leptogenesis at the TeV scale without subscribing to resonant leptogenesis. In our model, all new particles could be observable at the forthcoming Large Hardon Collider or the proposed future International Linear Collider.Comment: 7 pages, 3 figures. References added. Accepted by NP

    Scale of SU(2)_R symmetry breaking and leptogenesis

    Get PDF
    Models of leptogenesis often invoke the out-of-equilibrium decays of heavy right-handed neutrinos in order to create a baryon asymmetry of the universe through the electroweak phase transition. Their presumed existence argues strongly for the presence of an SU(2)RSU(2)_R gauge symmetry. We study the equilibrating effects of the resulting additional right-handed interactions and find that successful leptogenesis requires that mN1016m_N \gtrsim 10^{16} GeV if mN>mWRm_N > m_{W_R}, and mWR3×106GeV(mN/102GeV)2/3m_{W_R} \gtrsim 3 \times 10^6 GeV (m_N /10^2 GeV)^{2/3} if mN<mWRm_{N}<m_{W_R}, where mNm_{N} is the mass of the lightest right-handed neutrino. However, the mN>mWRm_N > m_{W_R} option is excluded in a supersymmetric theory with gravitinos.Comment: 4 pages (Revtex); accepted for publication with small modifications; conclusions unchange

    Influence of hyperhomocysteinemia on the cellular redox state - Impact on homocysteine-induced endothelial dysfunction

    Get PDF
    Hyperhomocysteinemia is an independent risk factor for the development of atherosclerosis. An increasing body of evidence has implicated oxidative stress as being contributory to homocysteines deleterious effects on the vasculature. Elevated levels of homocysteine may lead to increased generation of superoxide by a biochemical mechanism involving nitric oxide synthase, and, to a lesser extent, by an increase in the chemical oxidation of homocysteine and other aminothiols in the circulation. The resultant increase in superoxide levels is further amplified by homocysteinedependent alterations in the function of cellular antioxidant enzymes such as cellular glutathione peroxidase or extracellular superoxide dismutase. One direct clinical consequence of elevated vascular superoxide levels is the inactivation of the vasorelaxant messenger nitric oxide, leading to endothelial dysfunction. Scavenging of superoxide anion by either superoxide dismutase or 4,5-dihydroxybenzene 1,3-disulfonate (Tiron) reverses endothelial dysfunction in hyperhomocysteinemic animal models and in isolated aortic rings incubated with homocysteine. Similarly, homocysteineinduced endothelial dysfunction is also reversed by increasing the concentration of the endogenous antioxidant glutathione or overexpressing cellular glutathione peroxidase in animal models of mild hyperhomocysteinemia. Taken together, these findings strongly suggest that the adverse vascular effects of homocysteine are at least partly mediated by oxidative inactivation of nitric oxide

    Supersymmetric Model of Neutrino Mass and Leptogenesis with String-Scale Unification

    Full text link
    Adjoint supermultiplets (1,3,0) and (8,1,0) modify the evolution of gauge couplings. If the unification of gauge couplings occurs at the string scale, their masses are fixed at around 101310^{13} GeV. This scale coincides with expected gaugino condensation scale in the hidden sector Mstring2/3m3/21/31013M_{string}^{2/3} m^{1/3}_{3/2} \sim 10^{13} GeV. We show how neutrino masses arise in this unified model which naturally explain the present atmospheric and solar neutrino data. The out-of-equilibrium decay of the superfield (1,3,0) at 101310^{13} GeV may also lead to a lepton asymmetry which then gets converted into the present observed baryon asymmetry of the Universe.Comment: Improved by including constraints imposed by gravitino decay, new references added, corrections and changes made. Accepted for publication in Physics Letters.

    Soft Leptogenesis in Higgs Triplet Model

    Get PDF
    We consider the minimal supersymmetric triplet seesaw model as the origin of neutrino masses and mixing as well as of the baryon asymmetry of the Universe, which is generated through soft leptogenesis employing a CP violating phase and a resonant behavior in the supersymmetry breaking sector. We calculate the full gauge--annihilation cross section for the Higgs triplets, including all relevant supersymmetric intermediate and final states, as well as coannihilations with the fermionic superpartners of the triplets. We find that these gauge annihilation processes strongly suppress the resulting lepton asymmetry. As a consequence of this, successful leptogenesis can occur only for a triplet mass at the TeV scale, where the contribution of soft supersymmetry breaking terms enhances the CP and lepton asymmetry. This opens up an interesting opportunity for testing the model in future colliders.Comment: 17 pages, 5 figures; version accepted for publicatio

    Constraints on neutrino masses from leptogenesis models

    Full text link
    Upper bounds on the CP asymmetry relevant for leptogenesis are reexamined and found weaker than in previous literature, both for hierarchical and for quasi-degenerate right-handed neutrinos. Successful leptogenesis implies the usual lower bound on right-handed neutrino masses, and an upper bound on left-handed neutrino masses (which we obtain to be 0.15eV at 3sigma) only if right-handed neutrinos are assumed to be much more hierarchical than left-handed neutrinos. Otherwise both bounds can be considerably relaxed. The constraint on light neutrino masses varies assuming different interpretations of why neutrinos should be quasi-degenerate. With conservative assumptions, we find that a mild quasi-degeneracy allows neutrinos heavier than an eV compatibly with leptogenesis. We also extend computations of thermal leptogenesis to an alternative model of neutrino mass mediated by fermion triplets which was never considered so far for leptogenesis. Leptogenesis can be successful despite the effect of gauge interactions, resulting in only slightly stronger constraints on neutrino masses.Comment: 16 pages, 6 figure

    Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing

    Get PDF
    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education

    Type II Seesaw Higgs Triplet as the inflaton for Chaotic Inflation and Leptogenesis

    Get PDF
    In this paper, we consider a chaotic inflation model where the role of inflaton is played by the Higgs triplet in type II seesaw mechanism for generating the small masses of left-handed neutrinos. Leptogenesis could happen after inflation. This model is constructed without introducing supersymmetry (SUSY).Comment: 8 pages, 1 figure. Minor changes and a footnote added. Version to publish in PL
    corecore