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Abstract

We consider the minimal supersymmetric triplet seesaw model as the origin of neutrino masses and mixing as well as of the baryon asymmetry
of the Universe, which is generated through soft leptogenesis employing a CP-violating phase and a resonant behavior in the supersymmetry
breaking sector. We calculate the full gauge-annihilation cross section for the Higgs triplets, including all relevant supersymmetric intermediate
and final states, as well as coannihilations with the fermionic superpartners of the triplets. We find that these gauge annihilation processes strongly
suppress the resulting lepton asymmetry. As a consequence of this, successful leptogenesis can occur only for a triplet mass at the TeV scale,
where the contribution of soft supersymmetry breaking terms enhances the CP and lepton asymmetry. This opens up an interesting opportunity
for testing the model in future colliders.
© 2006 Elsevier B.V.
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Leptogenesis is an elegant way to generate the baryon asym-
metry of the Universe in connection with the origin of the ob-
served neutrino masses and mixing through the seesaw mech-
anism [1]. One way of understanding a tiny neutrino mass is
to relate it with the small vacuum expectation value of a Higgs
triplet [2] whose decay can also induce the cosmological baryon
asymmetry in the presence of at least two Higgs triplets [3]
or a right-handed neutrino [4] as required by the generation of
nontrivial CP and lepton asymmetry. In the minimal supersym-
metric version with one pair of triplets, there is a new way of
leptogenesis (called “soft leptogenesis”) in which CP phases in
the soft terms can contribute to generate the lepton asymmetry
[5,6]. Soft leptogenesis in the minimal supersymmetric Higgs
triplet model has been considered first in Ref. [7].

In this Letter, we revisit this last scenario to provide a care-
ful analysis on the quantities for the lepton and CP asymme-
tries and their cosmological evolution by considering the full
set of Boltzmann equations including thermal masses and the
temperature supersymmetry breaking effects consistently. We
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will also derive a set of simple Boltzmann equations from
the Maxwell–Boltzmann approximation taking into account the
difference between the Bose–Einstein and Fermi–Dirac statis-
tics, and show that they provide a fairly good approximation to
the full Boltzmann equations.

The most important effect included in our analysis is the
contribution of the gauge annihilation processes, which lead to
a significant reduction of the resulting lepton asymmetry for
the low Higgs triplet mass. The dynamics of such a system is
analyzed in Ref. [8] for the case of the conventional baryogen-
esis with heavy Higgs bosons in the SU(5) unification scheme.
Our analysis is extended to the lowest possible values of the
Higgs triplet mass where, as will be shown in the following, the
annihilation effect dominates over decays and inverse decays.
Another crucial ingredient of soft leptogenesis is the suppres-
sion of the asymmetry due to a small difference between boson
and fermion statistics at finite temperature. We find that this
effect for low values of the triplet mass becomes subleading
compared to that due to soft supersymmetry-breaking terms.
Let us also note that the annihilation effect becomes irrelevant
for a triplet mass higher than about 1010 GeV [9], for which,
however, the lepton asymmetry in the soft leptogenesis scenario
is also suppressed, as it is inversely proportional to the triplet
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mass [5]. As a result, we will conclude that the required baryon
asymmetry can be generated only at the multi-TeV range of the
Higgs triplet mass, and thus the model can lead to distinct col-
lider signatures through, in particular, the production and decay
of a doubly charged Higgs boson [10,11]. This opens up an-
other interesting possibility for generating the neutrino masses
and mixing as well as the cosmological baryon asymmetry at
the TeV scale, which can be tested in future colliders [12,13].

In the supersymmetric form of the Higgs triplet model [14],
one needs to introduce a vector-like pair of Δ = (Δ++,Δ+,Δ0)

and Δc = (Δc−−,Δc−,Δc0) with hypercharge Y = 1 and −1,
allowing for the renormalizable superpotential as follows:

(1)W = hLLΔ + λ1H1H1Δ + λ2H2H2Δ
c + MΔΔc,

where hLLΔ contains the neutrino mass term, hννΔ0. The soft
supersymmetry breaking terms relevant for us are

−Lsoft = {
hALLLΔ + λ1A1H1H1Δ

+ λ2A2H2H2Δ
c + BMΔΔc + h.c.

}
(2)+ m2

Δ|Δ|2 + m2
Δc

∣∣Δc
∣∣2

.

Note that we have used the same capital letters to denote the
superfields as well as their scalar components. We will con-
sider the universal boundary condition of soft masses; AL =
A1 = A2 = A and mΔ = mΔc = m0. In the limit M � m0,A,
the Higgs triplet vacuum expectation value 〈Δ0〉 = λ2〈H 0

2 〉2/M

gives the neutrino mass

(3)mν = 2hλ2
v2

2

M
.

The mass matrix of the scalar triplets is diagonalized by

Δ = 1√
2
(Δ+ + Δ−),

Δ̄c = 1√
2
(Δ+ − Δ−),

where Δ± are the mass eigenstates with the mass-squared val-
ues, M2± = M2 + m2

0 ± BM , and the mass-squared difference,
ΔM2 = 2BM . In terms of the mass eigenstates, the Lagrangian
becomes

−L= 1√
2
Δ±

[
hL̃L̃ + h(AL ± M)LL

+ λ1H̃1H̃1 + λ1(A1 ± M)H1H1

(4)± λ∗
2

¯̃
H 2

¯̃
H 2 ± λ∗

2

(
A∗

2 ± M
)
H̄2H̄2

] + h.c.

The heavy particles Δ̄± decay to the leptonic final states,

LL,
¯̃
L

¯̃
L, as well as the Higgs final states, H1H1, H̃1H̃1 and

H̄2H̄2,
¯̃

H 2
¯̃

H 2. Thus, the out-of-equilibrium decay Δ̄± →
LL,

¯̃
L

¯̃
L can lead to lepton asymmetry of the universe.

In order to discuss how to generate a lepton asymmetry in
the supersymmetric triplet seesaw model let us first consider
the general case of a charged particle X (X̄) decaying to a final
state j (j̄ ) and generating tiny CP asymmetric number densi-
ties, nX − nX̄ and nj − nj̄ . The relevant Boltzmann equations
in the approximation of Maxwell–Boltzmann distributions are

dYX

dz
= −zK

[
γD

(
YX − Y

eq
X

) + γA

(Y 2
X − Y

eq 2
X )

Y
eq
X

]
,

dYx

dz
= −zKγD

[
Yx −

∑
k

2Bk

Y
eq
X

Y
eq
k

Yk

]
,

(5)
dYj

dz
= 2zKγD

[
εj

(
YX − Y

eq
X

) + Bj

(
Yx − 2

Y
eq
X

Y
eq
j

Yj

)]
,

where Y ’s are the number densities in unit of the entropy den-
sity s as defined by YX ≡ nX/s ≈ nX̄/s, Yx ≡ (nX − nX̄)/s

and Yj ≡ (nj − nj̄ )/s. Here, the CP asymmetry εj in the decay
X → j is defined by

(6)εj ≡ Γ (X → j) − Γ (X̄ → j̄ )

ΓX

.

In Eq. (5), K ≡ ΓX/H1 with the Hubble parameter H1 =
1.66

√
g∗M2/mPl at the temperature T = M , and Bj is the

branching ratio of the decay X → j . For the relativistic degrees
of freedom in thermal equilibrium g∗, we will use the Super-
symmetric Standard Model value: g∗ = 228.75.

The evolution of the X abundance is determined by the de-
cay and inverse decay processes, as well as by the annihilation
effect described by the diagrams of Fig. 1, and are accounted for
by the functions γD and γA, respectively. Note that the triplets
are charged under the Standard Model gauge group and thus
have nontrivial gauge annihilation effect which turns out to be
essential in determining the final lepton asymmetry. Moreover,
as a consequence of unitarity, the relation 2Yx + ∑

j Yj ≡ 0
holds, so that one can drop out the equation for Yx , taking the
replacement

(7)Yx = −1

2

∑
j

Yj

in the last of Eqs. (5). In our model, the heavy particle X can be
either of the six charged particles; X = Δ++± ,Δ+± or Δ0±. Each
of them follows the first Boltzmann equation in Eq. (5) where
γD and γA are given by

(8)γD = K1(z)

K2(z)
,

(9)γA = α2
2M

πKH1

∞∫
1

dt
K1(2zt)

K2(z)
t2β(t)σ (t)

with

σ(t) = (
14 + 11t4

w

)(
3 + β2) + (

4 + 4t2
w + t4

w

)

×
[

16 + 4

(
−3 − β2 + β4 + 3

2β
ln

1 + β

1 − β

)]

(10)

+ 4

[
−3 +

(
4 − β2 + (β2 − 1)(2 − β2)

β
ln

1 + β

1 − β

)]
,

where tw ≡ tan(θW ) with θW the Weinberg angle, and β(t) ≡√
1 − t−2. The function γD is the ratio of the modified Bessel
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Fig. 1. Diagrams contributing to the gauge-annihilation amplitude of triplet particles. Δ̃, Δ̃c represent the fermionic partners of Δ and Δc , respectively, while A

indicates a gauge boson, λ a gaugino, h a Higgs particle, h̃ a higgsino, f a fermion and f̃ a sfermion.
functions of the first and second kind which as usual takes into
account the decay and inverse decay effects in the Maxwell–
Boltzmann limit. The function γA accounts for the annihi-
lation cross section of a triplet component X summing all
the annihilation processes; XX̄′ → Standard Model gauge
bosons/gauginos and fermions/sfermions where X′ is some
triplet component or its fermionic partner. The separate contri-
bution of each diagram in Fig. 1 is detailed in Appendix A. As
far as the Standard Model part is concerned, our result agrees
with that of Ref. [9], with one exception: the term proportional
to t2

w , due to the mixed gauge boson (W3B) final state in di-
agrams (c)–(f) of Fig. 1, is missing in Ref. [9]. However, this
difference concerns a subdominant contribution which is ex-
pected to have a negligible impact on phenomenology. The de-
cay and inverse decay amplitudes in the Maxwell–Boltzmann
limit are plotted in Fig. 2, along with a numerical evaluation
of the same quantities in the case of bosonic and fermionic fi-
nal states, where Bose–Einstein and Fermi–Dirac distributions,
as well as thermal masses, are included in the calculation. We
use this latter evaluation when we solve the full Boltzmann
equations for the lepton asymmetry numerically. The last fig-
ure shows that the Boltzmann approximation is well justified as
expected for the region of our relevance, z > 10.

Given γD and γA, we can now analyze the thermal evolution
of YX [8]. In Fig. 3, we plot the quantity (YX −Y

eq
X )/YX , which

quantifies the departure of the triplet density from its equilib-
rium value. In particular, the higher line shows the result when
only the processes of decay and inverse decay to light parti-
cles are included in the calculation. As expected, since K � 1,
YX follows closely the equilibrium density Y

eq
X with a slight

deviation of order 10−1. However, annihilation is indeed im-
portant in our case and cannot be neglected. This is shown in
the same figure by the lower curves, which represent the de-
Fig. 2. Decay and inverse-decay amplitudes entering in the Boltzmann equa-
tions. The solid lines show the decay amplitude γD in the Maxwell–Boltzmann
limit as given by Eq. (8), and the corresponding inverse-decay amplitude γID.
The dotted and dashed curves show the result of a full numerical evaluation of
the same amplitudes for fermionic and bosonic final states, respectively.

parture of the triplet density from its equilibrium value when
annihilation is included. The importance of annihilation can be
understood in the following way. The inverse decay freezes out
at zf ≈ 9 for K = 32 as Kz

5/2
f e−zf = 1. On the other hand,

the thermal averages of the annihilation and decay rate can be
compared by considering the following ratio [8]:

〈ΓA〉
〈ΓD〉 (zf ) � 2

α2

αX

z
−3/2
f e−zf ≈ 2 × 108 GeV

M
,
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Fig. 3. Fractional departure of the triplet comoving density YX from its equilib-
rium value Y

eq
X

, as a function of z ≡ m/T . The higher curve shows the result of
a calculation where the gauge annihilation effect is neglected, while the lower
ones show the same quantity including annihilation for Im(A) = 1 TeV and
log10(M/GeV) = 8, 7, 6, 5, 4, 3 from left to right. All curves are evaluated in
the Maxwell–Boltzmann approximation.

where αX = KH1/M . Thus, the annihilation effect becomes
negligible for M � 109 GeV. But in our case of soft leptogen-
esis, higher M suppresses the lepton asymmetry as ε̃l ∝ A/M ,
so there is a tension between these two effects, and lower val-
ues of M turn out to be favored. In Fig. 3, one can see that, due
to annihilation which freezes out at z ≈ 20, YX follows more
closely its equilibrium density Y

eq
X compared with the previous

case, with a deviation which is now of order 10−3. In particular,
this implies that the approximation

(11)YX − Y
eq
X = −Y

eq′
X

zK(γD + 2γA)

is a good one, since decoupling occurs indeed at high z. Never-
theless, in our numerical analysis, we solve the full Boltzmann
equations where the Bose–Einstein and Fermi–Dirac distribu-
tions as well as thermal masses, are included properly.

To find out the cosmological lepton asymmetry by the decay
of X = Δ±, one needs to calculate Yj with the states j = LL

and L̃L̃ and thus the corresponding CP asymmetry:

(12)ε
L,L̃

≡ Γ (Δ̄± → LL, L̃L̃) − Γ (Δ± → L̄L̄,
¯̃
L

¯̃
L)

Γ±
.

Recall that one cannot rely on the above Boltzmann equation (5)
for the mechanism of soft leptogenesis in the supersymmetric
limit of M � m0,A,B , as the CP asymmetries in the bosonic
and fermionic final states takes the opposite sign, εL = −ε

L̃
,

so that the total asymmetry in the lepton number density van-
ishes, Yl ≡ YL + Y

L̃
= 0. A nonvanishing lepton asymmetry

arises after taking into account the supersymmetry breaking ef-
fect at finite temperature [5], namely the difference between
the bosonic and fermionic statistics given by the Bose–Einstein
and Fermi–Dirac distribution, respectively. Such a thermal su-
persymmetry breaking effect can be well accounted by a slight
modification of the last Boltzmann equation of Eq. (5) resulting
from the extension of the usual Maxwell–Boltzmann approxi-
mation to the second order, as we will show below.

The complete form of the Boltzmann equation for the CP
asymmetry in the final state j contains

sH1

z

dYj

dz
≡

∫
dΠX dΠj1 dΠj2

[|Aj |2 − |Āj̄ |2
]

× [
fX(1 ± fj1)(1 ± fj2) − fj1fj2(1 + fX)

]
(13)+ · · · ,

where dΠ ’s are the phase space integration factors and Aj (Āj̄ )

is the amplitude of the decay X → j (X̄ → j̄ ). The distribution
functions fji

at thermal equilibrium are fBi
= 1/(e(Ei/T ) − 1)

or fFi
= 1/(e(Ei/T ) + 1) for the bosonic or fermionic state j .

Using the effective field-theory approach of resummed propa-
gators for unstable particles [15], the effective vertices of Δ+
(Δ̄+) and the states j (j̄ ) are

S
j
+ = y

j
+ − y

j
−

iΠ−+
�M2 + iΠ−−

,

(14)S̄
j̄
+ = y

j∗
+ − y

j∗
−

iΠ∗−+
�M2 + iΠ−−

,

where �M2 = 2BM . For Δ−, one takes the interchange of
+ ↔ − and �M2 → −�M2. Here, Π ’s are the absorptive part
of two point functions:

Π±± =
∑

k

yk∗± yk±
16π

Rk,

(15)Π±∓ =
∑

k

yk∗± yk∓
16π

Rk.

Calculating |Aj |2 −|Āj̄ |2 ∝ |Sj
X|2 −|S̄j̄

X|2, we get for Eq. (13),

[|Aj |2 − |Āj̄ |2
]
(1 ± fj1)(1 ± fj2)

(16)= − 4

16π
Im

(
y

j
+y

j∗
− CjΠ

∗−+
) �M2

(�M2)2 + Π2−−
.

Here, Rk include the thermal propagator effect in the cutting
rule [16] and Cj are the thermal phase space factor of the final
states. For the bosonic and fermionic states, we have

RB = √
1 − 4xB(1 + fB1 + fB2 + 2fB1fB2),

RF = (1 − 2xF )
√

1 − 4xF (1 − fF1 − fF2 + 2fF1fF2),

CB = √
1 − 4xB(1 + fB1)(1 + fB2),

(17)CF = (1 − 2xF )
√

1 − 4xF (1 − fF1)(1 − fF2),

where xB,F = m2
B,F (T )2/T 2 are the thermal masses of the

bosons or fermions. Let us note in Eq. (16) that the relation
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∑
j,k

Im
(
y

j
+y

j∗
− Cjy

k∗+ yk−Rk

)

= 1

2

∑
j,k

Im
(
y

j
+y

j∗
− yk∗+ yk−

)
(CjRk − CkRj )

∝ 1

2

∑
j,k

Im
(
y

j
+y

j∗
− yk∗+ yk−

)(
e

E1+E2
T − e

E3+E4
T

) ≡ 0

holds for any final states of j1,2 and intermediate states in the
loop k3,4. The same is true for the second part of Eq. (13). In
fact, this is nothing but the unitarity relation

∑
j Γ (X → j) =∑

j Γ (X̄ → j̄ ) from Eq. (13). Therefore, the lepton asymmetry
in the integrand of the Boltzmann equation (13) is found to be

2|h|2|λ1|2
[
Im(AL)M

(|A1|2 − M2)
− Im(A1)M

(|AL|2 − M2)]CLRH1

+ 2|h|2|λ2|2
{[

Im(AL)M
(|A2|2 − M2)

+ Im(A2)M
(|AL|2 − M2)]CLRH2

(18)+ Im(AL)MM2
ΔCLR

H̃2
+ Im(A1)MM2

ΔCH2RL̃

}
.

Note that the terms proportional to |h|4, which do not break
lepton number, disappear because of the previous relation of
CLR

L̃
−C

L̃
RL = 0. Thus, the asymmetry in Eq. (18) obviously

contains only the mixed terms with hλ1,2, signaling a lepton
number violation. With the universality condition for the soft
terms (A = AL = A1 = A2), we get a simple equation for the
lepton asymmetry as follows:

8|h|2|λ2|2 Im(A)M3[δBF + δsoft],
where δBF = 1

2

[
RH2(CL − C

L̃
) + C

L̃
(R

H̃2
− RH2)

]

(19)and δsoft = RH2CL̃

m2
0 + |A|2
M2

,

putting R = C = 1 in the denominator. In the limit M � m0,
|A|, we have

(20)Π±± = MΓ± = M2

8π

(|h|2 + |λ1|2 + |λ2|2
)

ignoring the small thermal effect and thus putting Rk = 1. One
thus finds that, the quantity inside the integrand of Eq. (13) is
proportional to

4BΓ±
4B2 + Γ 2±

4|h|2|λ2|2
(|h|2 + |λ1|2 + |λ2|2)2

Im(A)

M
[δBF + δsoft]

(21)≡ ε̃l[δBF + δsoft].
Here, one has the approximation of δsoft = (m2

0 + |A|2)/M2 as
can be seen in Fig. 4. One can also find similar expressions
for the Higgs–higgsino final states. Recall that unitarity rela-
tion enforces

∑
j ε

j
± = 0. The supersymmetry breaking effect

δBF at finite temperature can now be encoded in the Boltzmann
equation with the Maxwell–Boltzmann approximation by con-
sidering the expansion: 1/[exp(E/T ) ± 1] ≈ exp(−E/T )[1 ∓
exp(−E/T )]. After the phase space integration in Eq. (13), one
Fig. 4. The dashed curve shows the approximation to δBF(z) in Eq. (22), while
the solid line is the result of a numerical evaluation of the same quantity, which
includes the effect of thermal masses and of Fermi–Dirac and Bose–Einstein
distributions. The dotted curve shows the result of a numerical calculation of
the thermal average RH2C

L̃
which multiplies the soft supersymmetry breaking

term in Eq. (19).

obtains the simple modification of the usual Boltzmann equa-
tion with the insertion of the δBF(z) function determined by

(22)δBF(z) ≡ 2
√

2
K1(

√
2z)

K1(z)

which gives a further suppression compared to the conventional
contribution with the Bessel function K1(z). The above expres-
sion, which is monotonically decreasing in z, is valid for z � 1,
and is compared in Fig. 4 to a numerical calculation includ-
ing the effect of thermal masses, which cause δBF to vanish at
small z. The latter calculation of δBF is obtained by numerically
evaluating the thermal average of the absorption part of the two-
point function Π±∓. Concluding the above discussions, we find
that the total lepton asymmetry density Yl = YL + Y

L̃
follows

the approximate Boltzmann equation

(23)

dYl

dz
= 2gΔzKγD

[
ε̃lδ(z)

(
YX − Y

eq
X

) + Bl

(
Yx − 2

Y
eq
X

Y
eq
l

Yl

)]
,

where gΔ = 6 counts the total number of triplet components
generating the lepton asymmetry and δ(z) ≡ δBF(z) + δsoft. In
the above equation, the number K = Γ±/H1 takes the minimal
value of K = 32 for |h| = |λ2| � |λ1| as we have the rela-
tion [7]

(24)K = 32
|h|2 + |λ2|2

2|h||λ2|
( |mν |

0.05 eV

)
.

As one goes away from the minimum value of K with |h| �=
|λ2|, the quantity ε̃l in Eq. (21) gets suppressed. Furthermore,
one realizes that the resulting lepton asymmetry is maximized
in case of B ˜ = B ˜ � B ˜ with |h| = |λ2| � |λ1|, in
L,L H2,H2 H1,H1
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Fig. 5. Final lepton asymmetry produced by triplet decay as a function of M .
Different curves refer to Im(A) = 1, 2, 3, 4, 5 TeV from bottom to top.

which case the Boltzmann equation for the lepton asymmetry
takes the simplest form of

(25)
dYl

dz
= 2gΔzKγD

[
ε̃lδ(z)

(
YX − Y

eq
X

) − Y
eq
X

Y
eq
l

Yl

]
.

Let us now note that, taking the resonance condition B = Γ±,
one finds the maximal value of ε̃l = Im(A)

M
, which becomes or-

der one for A ∼ M ∼ TeV.
It is now easy to find the approximate solution for Yl from

Eq. (25) with the insertion of YX given in Eq. (11). Both are
found to be a fairly good approximation to the numerical so-
lution of the full Boltzmann equations, as expected from our
previous discussions. The results of our numerical calculation
are shown in Fig. 5 where we plot the final lepton asymmetry
as a function of the triplet mass M for Im(A) from 1 to 5 TeV.
When |A| ∼ M , one needs to recover the contributions of order
|A|/M which were neglected, e.g., in Eqs. (15) and (21). Taking
the parameter region, m0 < |A| = Im(A), we keep those contri-
butions in the numerical calculations for the curves in Fig. 5.
A remark is in order here. For M � 1010 GeV, the annihilation
effect becomes irrelevant and the final asymmetry is determined
by the decay and inverse decay effects, i.e., by the value of K

only, which confirms the result of Ref. [9]. One can see this fea-
ture in Fig. 5, where the lepton asymmetry as a function of M

changes slope at about M ∼ 1010 GeV. Below this value the
annihilation effect sets in, and the final asymmetry is strongly
suppressed compared to the value one would obtain by extrap-
olating the curve with the slope for M � 1010 GeV.

When the trilinear coupling is larger than the triplet mass,
|A|/M � 1, besides an enhancement of the CP-violating term
of Eq. (21), one could expect that the additional contribution
to the coupling of the triplet particles to scalar final states en-
hances the total annihilation rate, increasing substantially the
value of the parameter K compared to the amount given by
Eq. (24), which is obtained in the limit |A|/M � 1. As a conse-
quence of this, the consequent additional wash-out effect could
in principle suppress the ensuing lepton asymmetry. However,
this is not the case due to the fact that, as we have already dis-
cussed, the annihilation process freezes out later than inverse
decays, so the latter play almost no role in the determination
of the epoch when lepton asymmetry production can start. Ac-
tually, this epoch starts when decays eventually overcome an-
nihilations, so a higher value of K can slightly anticipate it,
leading so to a higher asymmetry instead than a suppression,
although this effect is quite mild. This is what we observe in
the numerical calculation shown in Fig. 5, where we have as-
sumed as before |h| = |λ2| � |λ1| (in order to maximize the
amount of CP violation given by Eq. (21)) and maximized the
CP-violating phase (i.e., we have assumed Re(A) = 0).

We also remark that sphaleron interactions are kept in ther-
mal equilibrium even after the electroweak phase transition and
freeze out around Tsp = M/zsp � 90 GeV, so that only the
lepton asymmetry produced for z < zsp can be efficiently con-
verted into a baryon asymmetry [13]. As shown in Fig. 3, due
to the gauge annihilation effect, the lepton asymmetry produc-
tion is delayed until z = z0 � 20. For low values of M (∼ a few
TeV) one can have zsp < z0, which implies a suppression in the
final lepton asymmetry. This explains the fast rise at low val-
ues of M of all the curves in Fig. 5. On the other hand, the dips
observed in the final asymmetry for M ∼ 20|A| correspond to
the case when the two contributions δBF and δsoft in Eq. (21)
are of the same order and cancel. This dip separates the two re-
gions where δBF or δsoft dominates in the determination of the
final asymmetry. As shown in Fig. 5, the CP-violating contribu-
tion from the soft supersymmetry breaking term δsoft in Eq. (19)
can strongly enhance the final lepton asymmetry at low values
of M . As a result, it is evident that the required baryon asym-
metry can be reached whenever A and M are in the multi-TeV
region.

Before concluding our work, let us remark some exper-
imental consequences of the model at future colliders. As
shown above, successful baryogenesis requires a TeV-scale
triplet mass and Yukawa couplings of the same order, h ∼
λ2 ∼

√
mνM/v2

2 ∼ 10−6. Thus, all the low-energy lepton flavor
violating processes like μ → eγ or μ → 3e are highly sup-
pressed [11]. On the other hand, future accelerators have a po-
tential to produce such Higgs triplets, in particular, the peculiar
doubly charged component through the Drell–Yan processes
[10]. Then, various features of the model can be checked by
observing the branching ratios of the triplet decay to lepton and
higgsino pairs, in particular, Δ−− → l−i l−j , H̃−

2 H̃−
2 , allowing

also to study neutrino mass patterns [11].

In conclusion, we have investigated baryogenesis assuming
the minimal supersymmetric Higgs triplet model as the origin
of neutrino masses and mixings. This model, with only one
pair of triplets, can provide a mechanism for soft leptogene-
sis employing a CP-violating phase and a resonant behavior in
the supersymmetry breaking sector. Our analysis shows that the
original soft leptogenesis, relying on the supersymmetry break-
ing effect proportional to the small difference between boson
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and fermion statistics at finite temperature cannot produce the
right amount of baryon asymmetry due to the gauge annihi-
lation effect. In particular, we have calculated the full gauge-
annihilation cross section including all the relevant supersym-
metric intermediate and final states, as well as coannihilations
with the fermionic superpartners of the triplets, finding that this
effect strongly suppresses the resulting lepton asymmetry. On
the other hand, the contribution of soft supersymmetry break-
ing terms, particularly a sizable value for the Im(A) parameter,
can enhance the lepton asymmetry to provide successful lepto-
genesis if the triplet mass is in the TeV range. In this case, the
model predictions can be tested in future colliders by searching
for a very clean signal, e.g., from the production and decay of
doubly charged Higgs bosons.

Appendix A

In this appendix we give the detailed expression for the an-
nihilation cross section shown in compact form in Eq. (10), and
calculated from the diagrams (a)–(s) of Fig. 1. In the following,
masses of light particles are neglected, while we assume a com-
mon mass M for the triplets and their supersymmetric partners.
The reduced cross section introduced in Eq. (10) is defined as

σ(t) ≡ 1

2g4
2

1

3

∑∫
d cos θ |M|2,

in terms of the integrated squared amplitude, averaged over the
initial triplet state (hence the factor 1/3) and summed over the
coannihilating particles, given by

1

3

∑∫
d cos θ |M|2

= 4

3

∑
a

tr(Ta)
2 tr

(
τa

2

)2[
F(a)+(h) + F(b)+(g) + F(i) + F(l)

]

+ 4

3

∑
ab

{
tr
(
T 2

a T 2
b

)[
F(c)+(d)+(e) + F(n)+(o) + F(p)+(q)+(r)

]

(A.1)+ 8fabcfabc

[
F(f) + F(m) + F(s) + F ′

(d)

]}
,

where

F(a)+(h) = β2

3
, F(b)+(g) = β2

6
, F(i) = 1

2
,

F(l) = 1, F ′
(d) = −1

2
, F(s) = −1,

F(c)+(d)+(e) = 2 + 2

[
1 − β2 + β4 − 1

2β
ln

1 + β

1 − β

]
,

F(n)+(o) = 2 + 2

[
−2 + 1

β
ln

1 + β

1 − β

]
,

F(p)+(q)+(r) = 4 + 2

[
−2 + 1

β
ln

1 + β

1 − β

]
,

F(f) =
[

1 − 5

6
β2 − (β2 − 1)2

2β
ln

1 + β

1 − β

]
,

(A.2)F(m) = β2

3
+

[
1 + β2 − 1

2β
ln

1 + β

1 − β

]
.

In the last equation we have kept within squared parentheses
quantities that vanish for β → 0, and the subscripts refer to the
contributing Feynman diagrams listed in Fig. 1. In Eq. (A.1), Ta

and τa/2 are the SU(2) × U(1) group generators for the triplet
and doublet representations and fabc are the structure constants.
Assuming the minimal supersymmetric Standard Model parti-
cle content, the traces are given by

1

3

∑
a

tr(Ta)
2 tr

(
τa

2

)2

= g4
2

(
14 + 11t4

w

)
,

(A.3)
1

3

∑
ab

tr
(
T 2

a T 2
b

) = g4
2

(
4 + 4t2

w + t4
w

)
,

and
∑

ab fabcfabc = 6g4
2 .

Since annihilation decouples for z � 1, the integral in
Eq. (9) can be approximated by making use of the following
low-temperature expansion:

(A.4)

∞∫
1

dt
K1(2zt)

[zK2(z)]2
t2β(t)σ (t) � 1

2z3

[
b0 + b1

z
+ · · ·

]
,

where

b0 = 47 + 32t2
w + 49

2
t4
w,

(A.5)b1 = −3

2

(
98

3
+ 32t2

w + 19t4
w

)
.

Although for our results we used a numerical integration of
Eq. (9), we have checked that the above approximation leads
to a good fit to the full numerical calculation for z � 10, an in-
terval that safely includes the range of z relevant for the present
analysis. We finally notice that the annihilation amplitude in-
creases sizably in the supersymmetric theory compared to the
Standard Model case, in significant excess of the factor O(2)

suggested by a naive expectation. In fact, the value of b0 in
Eq. (A.5) is almost 8 times larger than the Standard Model value
b0 = 6 + 8t2

W + 2t4
W coming from the diagrams (c)–(f). Such an

enhancement is mainly due to a larger number of available final
states for the diagrams (i) and (l), corresponding to the “contact
term” for scalars and to triplet–striplet annihilation to gauginos,
respectively.
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