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Abstract: Spatiotemporal climate variability is a leading environmental constraint to the rain-fed

agricultural productivity and food security of communities in the Abbay basin and elsewhere in

Ethiopia. The previous one-size-fits-all approach to soil and water management technology targeting

did not effectively address climate-induced risks to rain-fed agriculture. This study, therefore,

delineates homogenous climatic regions and identifies climate-induced risks to rain-fed agriculture

that are important to guide decisions and the selection of site-specific technologies for green water

management in the Abbay basin. The k-means spatial clustering method was employed to identify

homogenous climatic regions in the study area, while the Elbow method was used to determine an

optimal number of climate clusters. The k-means clustering used the Enhancing National Climate

Services (ENACTS) daily rainfall, minimum and maximum temperatures, and other derived climate

variables that include daily rainfall amount, length of growing period (LGP), rainfall onset and

cessation dates, rainfall intensity, temperature, potential evapotranspiration (PET), soil moisture,

and AsterDEM to define climate regions. Accordingly, 12 climate clusters or regions were identified

and mapped for the basin. Clustering a given geographic region into homogenous climate classes

is useful to accurately identify and target locally relevant green water management technologies

to effectively address local-scale climate-induced risks. This study also provided a methodological

framework that can be used in the other river basins of Ethiopia and, indeed, elsewhere.

Keywords: climate homogenization; k-means clustering; green water; technology targeting;

abbay basin

1. Introduction

Spatiotemporal climate variability is a leading environmental factor that determines
the rain-fed agricultural productivity and food security of communities in a given geo-
graphical region by affecting the amount and spatiotemporal distribution of green water
resources; the water held in the soil and available to crops and plants [1,2]. The effect
of temperature and rainfall variability causes inter-annual variability in cereal crop pro-
ductivity by about 30–50% in rain-fed agriculture [3]. The impact of climate variability is
extremely high in countries like Ethiopia, where there is very high spatiotemporal rainfall
and temperature variability caused by the complex topography and north–south oscillation
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of overhead solar radiation [4]. An annual-based north–south oscillation of overhead solar
radiation over Ethiopia determines the location of the Inter Tropical Convergence Zone
(ITCZ), then by the direction and magnitude of rain-producing wind flow [4]. The impact
of climate on rain-fed agriculture is not only caused by inter-annual rainfall variability
but also by fluctuations in annual rainfall cycles, length of growing period (LGP), rainfall
intensity, rainfall onset and cessation dates, and outbreaks of climate-related crop diseases
and pests [5–7]. Temperature also determines the spatial and temporal distribution of green
water and crop productivity in the rain-fed agriculture system by influencing the rate of
water loss from the soil through evapotranspiration [7,8].

Evidence from empirical studies such as [4] indicates that the occurrence and impact
of climate-induced risks on rain-fed agriculture differ from region to region significantly.
Furthermore, except for temperature, which showed a steadily increasing trend over large
areas, trends in rainfall amount and extremes are complex and varied from place to place in
the Abbay basin in particular and across Ethiopia in general [4,9]. Similarly, scenario-based
studies indicate that the impacts of future climate change on rain-fed agriculture and crop
productivity vary from place to place in Ethiopia [10,11]. In addition to the climatic factors,
there are other environmental factors such as topography, soil condition, land use, and
cover, as well as anthropogenic factors such as agricultural practices and management
decisions that can affect the availability of green water in a given area and at a particular
time [12]. Recent evidence also confirms that climate change, population growth, and
land cover conversation are significantly affecting the availability and distribution of green
water resources [13–15].

Poor water utilization and management practices are another set of drivers for the low
productivity of primary smallholder rain-fed agriculture in the county [16]. Although many
soil and water conservation programs and projects have been implemented since the 1980s,
the outcomes have not been adequate nor sustainable as both design and implementations
followed top-down and one-size-fits-all approaches without considering spatial climatic
variations [16,17]. Moreover, the traditional agroecological zone (AEZ)-based recommenda-
tions for green water and agronomic management practices [18] poorly capture local-scale
climate-driven green water-related risks. Hence, there is a need to improve green water
management practices and the targeting of green water management interventions in the
country by considering local scale patterns and risks of climate variability and climate
change. Clustering areas into homogenous climatic units can facilitate the identification
and characterization of major agricultural water security risks, as well as foster the selection
and implementation of site-specific green water management technologies [16].

BCEOM [19] is the only available study that has classified the Abbay basin into four
climate clusters by considering the spatial variation of rainfall amount and its seasonal
distribution. The four climate clusters include (1) the southeastern part of the basin, which
receives more than 1400 mm mean annual rainfall and has a relatively longer monomodal
rainfall pattern; (2) the central part of the basin which is characterized by short-length
monomodal rainfall pattern; (3) the eastern part of the basin that has small and bimodal
rainfall pattern; and (4) the northwestern part of the basin that has monomodal rainfall
pattern and receives less than 1200 mm mean annual rainfall amount. Another national-
scale study conducted by [20] classified the Abbay basin into five rainfall clusters based on
seasonal rainfall cycles and interannual rainfall variability. These rainfall-based clustering
studies have identified the broader regional classes but have not captured local scale rainfall
variability and water availability and, hence, are not suitable for local scale planning
and operational activities. There is a need for a higher resolution classification that uses
multiple climate and non-climate (e.g., topography) variables to support effective green
water management.

The objective of this study is to produce and characterize climate clusters for the Abbay
basin. The clustering was made for the kiremt (June–September) primary rainy season,
which supports 70–80% of the rain-fed agricultural production of the country. Different
from previous studies such as [19,21–24] that considered only the spatial variation of the
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annual rainfall cycle, we used other rainfall variables (rainfall amount, onset and cessation
dates, length of growing period, and rainfall intensity), temperature, evapotranspiration,
and soil moisture in our climate classification. These climate variables are important
determinants of the productivity of the rain-fed agricultural system of the country [25–29].
The results generated from this study are useful to optimize the selection and application
of site-specific green water management technologies in the study area.

2. Data and Methods

2.1. Study Area

The Abbay basin, also called the Upper Blue Nile Basin (UBNB), is located in the
northwestern part of Ethiopia between 7◦40′ N and 12◦51′ N and 34◦25′ E and 39◦49′ E
and covers a total area of 199,812 km2 (Figure 1). Rugged topography in the central and
eastern parts and flat lowlands in the western parts is the major terrain feature of the
basin. About 60% of the basin’s area is highland, with elevations of ≥1500 m asl. It is an
important basin in the country as it contributes approximately 45% of the total surface
water resources, accommodates 25% of the population, accounts for 20% of the area, and
contributes about 40% of the agricultural production in the country [30]. The mean annual
runoff generated from the Abbay basin is estimated at 49 BCM. The rugged topography,
together with the north–south oscillation of the Inter Tropical Convergence Zone (ITCZ),
controls the geographical and temporal distribution of the climate system in the Abbay
basin [31]. The climate in the Abbay basin varies between hot and semi-arid conditions
in the lowlands along the Ethio-Sudanese border and cool and humid conditions in the
highlands located in the eastern part of the basin [32].

ff

′ ′ ′ ′

≥

ff

 

ff

Figure 1. Map of Abbay River basin.

2.2. Data and the Sources

For this study, different climatic data were used for processing and development of
homogeneous climate clusters (Table 1). The Enhancing National Climate Services (EN-
ACTS) daily time scale 4 km resolution rainfall and minimum and maximum temperature
datasets [33] were used. These datasets were also used to derive the onset date, cessation
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date, and length of growing period (LGP), which were used as inputs in the analysis.
Climate variability controls the practice and productivity in the rain-fed agricultural system
by determining the start and end of the farming calendar, LGP, soil moisture balance, and
types of crops that can be grown in an area [5,6].

Table 1. Data used for climatic regionalization in the Abbay basin.

No Data Type Source Spatial Resolution Temporal Resolution

1 Precipitation ENACTS ~4 km 1981–2018 (daily)
2 Maximum temperature (Tmax) ENACTS ~4 km 1981–2018 (daily)
3 Minimum temperature (Tmin) ENACTS ~4 km 1981–2018 (daily)
4 Onset date Own analysis ~4 km 1981–2018 (Annual)
5 Cessation Own analysis ~4 km 1981–2018 (Annual)
6 Length of growing period (LGP) Own analysis ~4 km 1981–2018 (Annual)
7 Potential evapotranspiration (PET) Own analysis ~4 km 1981–2018 (daily)
8 Precipitation Concentration Index (PCI) Own analysis ~4 km 1981–2018 (Annual)
9 Soil moisture Own analysis ~4 km 1981–2018 (daily)
10 Elevation AsterDEM v2

The rainfall onset and cessation dates were defined using a modified version of the
Food and Agricultural Organization (FAO, 1986) method. It was defined as the day n after
1 June (i) or 1 March (i), depending on the season, when the daily precipitation exceeds half
of the potential evapotranspiration.

n

∑
i=1

R >

n

∑
i=1

PET/2

Rainfall cessation was defined as the period when this relationship no longer holds. It
is important to mention here that the indicated cessation dates do not mean that there is
no rainfall after those dates; rather, the cessation dates refer to the dates when the amount
of rainfall becomes less than half of the PET. The length of the growing season (LGP) is
simply defined as the number of days between the onset and cessation. The rainfall onset,
cessation, and LGP computations were performed for two rainy seasons, which occurred
during June–July–August–September (JJAS) and March–April–May (MAM). Most parts
of the study area received rainfall during JJAS; however, some areas received short rain
during MAM, apart from the JJAS. Potential evapotranspiration was computed using the
Hargreaves method, considering the daily minimum and maximum temperature from the
ENACT dataset. Soil moisture was estimated using a simple bucket 1D water balance model
at the daily timescale and was used as the input. In this method, soil moisture was generated
at the daily timescale by assuming the soil to be a reservoir that periodically fills by rainfall
events in the form of randomly distributed patterns [34]. This water balance mode was used
to estimate soil moisture dynamics in a single top soil layer and conceptualized as a bucket
receiving and filled by infiltration driven by gravity and lost by evapotranspiration and/or
drainage [35]. The precipitation concentration index was generated from the precipitation
data and used to capture the temporal distribution of rainfall and its spatial pattern. It is
used to quantify the relative distribution of rainfall patterns. According to Oliver [36], a PCI
value < 10.0 represents a mostly uniform precipitation distribution. A PCI between 11 and
15 represents moderate precipitation concentration. A PCI between 16 and 20 represents an
irregular distribution. A PCI value above 20 represents strong irregularity.

Topography is another dimension that was considered in the study since it is an
important local climate modifier as well as determines surface moisture conditions. Overall,
10 variable input layers were prepared for the clustering analysis (Table 1).

2.3. Data Processing

A stepwise data processing technique was employed for the study (Figure 2). The
first step was making all data layers have the same boundary and spatial resolution; the
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data layers were clipped to the Abbay basin boundary and resampled to a 4 km grid
resolution. The second step involved the calculation of exceedance probabilities to capture
the temporal variability of the climate variables. The exceedance probability indicates
the likelihood that up to a certain value occurs based on historical data. Typically, an
80% exceedance probability is used in long-term climate analysis, and this reference was
used here. Subsequent to the exceedance probabilities computation, variable selection was
carried out to reduce the variable space and allow parsimonious model-based clustering.
For this, principal component analysis (PCA) was used to reduce the data dimension and
maintain only important variables by excluding those that carry redundant information.
PCA axes with eigenvalues greater than 1 were retained to ensure that only PCA axes
with a significant contribution were used for further analysis [37]. However, we retained
a climate variable (cessation date) due to its importance in determining the timing and
availability of green water resources in the rain-fed agricultural system. The final data
processing step was clustering, and in this study, the k-means spatial clustering [38–41]
was employed to find homogenous climatic regions of the study area. k-means clustering
is generally simple to implement, and it can be used with large datasets having medium to
coarse spatial resolution.

𝑊 𝐶 𝑋𝑖 𝜇𝑘∈

𝑊 𝐶  𝑋𝑖 𝜇𝑘∈

 

Figure 2. General framework of clustering.

k-means clustering is defined as the sum of squared distances of Euclidean distances
between items and the corresponding centroid, which is shown as follows:

W(Ck) = ∑
xi∈Ck

(Xi − µk)2

Here, xi is the ith data point of cluster k (Ck), and µk is the mean value of points in
cluster k. The total within-cluster variation is defined as follows:

Total within-cluster variation =

k

∑
k=1

W(Ck) =
k

∑
k=1

∑
xi∈Ck

(Xi − µk)2

The total within-cluster sum of squares measures the goodness of the clustering, which
increases as the sum of squares measures decreases.

The k-means algorithm requires the user to specify the number of clusters. To reduce
subjectivity, the elbow method was used to select the optimal number of clusters. The
Elbow method helps to find the optimal number of clusters. This method uses the concept



Climate 2023, 11, 212 6 of 14

of Within Cluster Sum of Squares (WCSS), which defines the total variations within a
cluster. WCSS is calculated with the following formula:

WCSS = ∑ Pi in cluster 1 distance (Pi C1 )
2 + Pi in cluster 2 distance (Pi C2 )

2

+Pi in cluster 3 distance (Pi C3 )
2

In the formula of WCSS, ∑ Pi in cluster 1 distance (Pi C1 )
2 is the sum of the square of

the distances between each data point and its centroid within cluster 1. To measure the
distance between data points and the centroid, Euclidean distance or Manhattan distance
can be used. The elbow method uses a graphical representation to select the optimal K.

The 1st moment and 2nd moment descriptive statistics were applied to characterize
each homogeneous climate cluster and interpret it with respect to water availability and
agricultural water management. In this regard, mean, median, range, standard deviation,
and variance statistics were used. The climate classification was performed for the Kiremt
growing season. The length of the growing period (LGP) was defined as the number of
days taken for the cumulative precipitation to exceed half the cumulative potential evapo-
transpiration. The rainfall onset and cessation dates were also determined by considering
this water balance approach.

3. Results

3.1. Variables Used for Clustering

The variables used for the clustering were selected by applying PCA. The variance,
cumulative variance, and Eigenvalues generated from the PCA are shown in Figure 3.
The result reveals that the two components with an Eigenvalue greater than one explain
more than 77% of the variance. Of this, 52.3% of the variance was explained by the
first component, and the remaining 25.2% of the variance was explained by the second
component. The Eigenvalues after the second dimension are less than one, indicating that
these PCs explain less than the original variables (Figure 3). Accordingly, only the first and
second principal components were retained and selected for further analysis.

𝑊𝐶𝑆𝑆  𝑃     𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑃  𝐶     𝑃     𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑃  𝐶    𝑃     𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑃  𝐶    ∑ 𝑃     𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑃  𝐶    
tt

 

tt

Figure 3. PCA dimensions, Eigenvalue, and cumulative variance.

The quality of variable representation was analyzed and demonstrated on a Cos2
factor map (Figure 4). The results are presented in the Cos2 factor map, on which the
variables that are better represented by the two PCs appear close to the circumference of
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the correlation circle. The variables are well represented by the principal components, with
the exception of the rainfall cessation date, which has a lower representation. This latter
variable was kept in the analysis due to its importance for agriculture.

tt

 

tt

Figure 4. Cos2 factor map representing the quality of variables.

The result shows that the elevation, length of growing season, rainfall onset date,
maximum and minimum temperatures, soil moisture, and potential evapotranspiration
contribute the most to dimension one, while the precipitation concentration index, PET,
and precipitation contribute to dimension two. Furthermore, Figure 4 displays that the
distances of the variables from the origin in all covariates are relatively high, demonstrating
that most of these variables are very useful for cluster analysis. The result further shows
that the PET, elevation, and maximum and minimum temperatures have relatively high
Cos2 values.

3.2. Climate Clusters of the Abbay River Basin

The unsupervised k-means clustering considered classifications using up to 150 clusters
(Figure 5), from which the optimal number of clusters was selected using the elbow method.
The Elbow method is a graphical quasi-objective method in which the optimal number of
clusters is selected at the point where the graph of the number of clusters versus WCSS
starts to bend and flatten out.

Based on the Elbow graph (Figure 5), 12 climate clusters were identified and mapped
(Figure 6). The climate clusters are simply labeled by numbers from 1 to 12.
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Figure 5. Total number of climate clusters generated by the k-means clustering and optimal number

of clusters determined by the Elbow method. The broken line indicate the number of clusters

determined by the Elbow method.

 

Figure 6. Climate clusters in the Abbay Basin generated by the k-means clustering method.
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3.3. Climate Variation between Clusters

Table 2 presents the areal mean annual value of the climate variables for the 12 climate
clusters of the Abbay River basin. The climate variables that were used for the study are
important determinant factors of spatiotemporal variability and availability of green water
for rain-fed agriculture.

Table 2. Characteristics of the climate variables in the 12 climate clusters.

Climate
Clusters

Rainfall
Onset
Date

(Pentad)

Rainfall
Cessation

Date
(Pentad)

LGP
(Pentad)

PCI
Annual
Rainfall

(mm)

PET
(mm)

Soil
Moisture

(mm)

Min
Tem.
(◦C)

Max
Tem.
(◦C)

Mean
Elevation

(m asl)

Rainfall
Cycle

(number)

1 32.3 53.4 21.1 16.6 1386.4 1432.7 24.7 13.8 26.7 1561.9 1
2 33.8 53.6 19.8 18.1 1190.2 1261.2 13.4 9.2 23.1 2538.5 2
3 19.2 49.5 30.4 20.3 1006.3 1303.0 13.8 8.9 22.4 2620.3 2
4 26.1 54.3 28.2 16.2 1514.2 1425.6 62.5 14.5 28.7 1401.2 1
5 26.1 60.0 33.9 15.9 1603.8 1409.8 75.5 14.6 28.0 1458.7 1
6 31.8 53.7 21.9 16.2 1645.8 1289.1 33.5 10.8 24.3 2267.5 1
7 27.2 54.0 26.8 18.2 1423.5 1655.8 60.1 16.4 31.2 974.8 1
8 25.5 53.9 28.5 14.6 1769.5 1320.7 79.9 12.9 26.2 1846.8 1
9 33.6 53.7 20.0 19.9 1157.8 1467.0 10.6 12.4 27.0 1798.6 2

10 27.2 54.2 27.0 19.5 1198.9 1846.8 51.6 19.1 34.8 698.0 1
11 30.4 54.1 23.6 19.0 1427.5 1449.4 58.3 12.9 27.6 1755.9 1
12 34.4 49.2 14.8 21.1 1006.6 1301.3 11.5 9.0 22.0 2511.5 2

Note: Pentad is a period of five days.

The results demonstrate that four of the climate clusters (2, 3, 9, and 12) experience
a bimodal (Belg and Kiremt) rainfall pattern and are located in the eastern part of the
basin (Figure 6). The remaining eight clusters experience monomodal rainfall patterns or
the Kiremt season only. The mean length of growing period (LGP) for the Kiremt season
varies between 2.5 months in climate region 12 and 5.6 months in climate region 5. The
climate regions located in the western part of the basin have relatively long growing
periods (4.5–5.6 months). In contrast, the LGP was relatively short (3.3–3.9 months) for
those climate regions located in the central and eastern parts of the basin, except for region
three, where the LGP is 5.1 months. The relatively longer LGP for region three, which is
located in the eastern part of the basin, is attributable to the early onset of rainfall. Rainfall
in this region exceeds half of the PET in early March, while this occurs in early May in the
other regions of the eastern and central parts of the basin.

The rainfall onset and cessation dates were earliest for region 3; in this region, rainfall
exceeds half of the PET in early April and drops to half of PET in early September. Region
12 has a similar rainfall cessation date (early September). The rainfall onset time in five
regions (4, 5, 7, 8, and 10) is in the first two weeks of May. The rainfall onset for the other
six regions is between early May (regions 6 and 11) and the third week of May (regions
2, 9, and 12). The rainfall cessation date for four climate regions (1, 2, 6, and 9) is in the
last week of September, while it is in early October in five regions (4, 7, 8, 10, and 11). The
fall of rainfall amount to less than half of the PET can be caused by the decrease in rainfall
amount or increase in the PET amount as the temperature starts to rise with the decreasing
cloud cover over the region. The rainfall cessation time for region 5 is in October.

In general, the mean annual rainfall decreases from the southwestern towards the
northern and northeastern parts of the basin. The mean annual rainfall is relatively small
(less than 1200 mm) for climate regions 2, 3, 9, and 12, which are all located in the eastern and
central parts of the basin. The mean annual rainfall is relatively high (1514.2–1769.5 mm) in
four climate regions (4, 5, 6, and 8) which are located in the southwestern part of the basin.
The mean annual rainfall in regions 7, 10, and 11, which are located in the northwestern
part of the basin, is 1423.5 mm, 1198.9 mm, and 1427.5 mm, respectively. Furthermore, the
mean annual rainfall for region 1 is 1386.4 mm.

The intensity of rainfall, as represented by PCI, is lowest (14.6 mm) in region 8 and
highest (21.1 mm) in region 12. The PCI is relatively low (14.6–16.6) for regions 1, 4, 5, 6, and
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8, and all of these regions are located in the southwestern part of the basin. These climate
clusters are also known for their extended rainfall season. The PCI is high (19.9–21.1) in
regions 3, 9, and 12; all of these regions are located in the extreme eastern part of the basin.
The mean annual PET amount is lowest (1261.2 mm) in region 2 and highest (1846.8 mm)
in region 10. In general, the mean annual PET is high in climate regions 7 (1655.8 mm) and
10 (1846.8 mm); both of these regions are located in the western lowland part of the basin.
It is relatively low (1261.2–1301.3 mm) in regions 2, 3, 6, 8, and 12. The mean annual PET in
the five regions (1, 4, 5, 9, and 11) varies between 1409.8 mm and 1467.0 mm. The spatial
variation of annual PET is due to the variation of temperature between the climate clusters.
The mean annual minimum and maximum temperatures vary between 8.9 ◦C and 19.1 ◦C
and 22.0 ◦C and 34.8 ◦C, respectively. The mean minimum and maximum temperatures
are high in the two climate regions (7 and 10) that are located in the western part of the
basin. The mean minimum and maximum temperatures are 16.4 ◦C and 31.2 ◦C in region 7
and 19.1 ◦C and 34.8 ◦C in region 10, respectively. Low mean minimum (8.9–9.2 ◦C) and
maximum (22.0–23.1 ◦C) temperatures characterize the three climate regions, which are
located in the eastern part of the basin.

Soil moisture content also reveals significant variation between the climate clusters.
The lowest (10.6 mm) mean annual soil moisture content is found for climate region 9, and
the highest (79.9 mm) mean annual soil moisture content is found for climate region 8. In
general, the mean annual soil moisture content is relatively high (60.1–79.9 mm) in four
climate regions (4, 5, 7, and 8). In contrast, four climate regions that include regions 2, 3, 9,
and 12 have relatively low (10.6–13.8 mm) mean soil moisture content; all of these regions
are located in the eastern part of the Abbay basin. The mean annual soil moisture content
for the other climate regions varies between 24.7 mm in region 1 and 58.3 mm in region 11.

The mean altitude of climate regions varied between 698 m asl for climate region 10
and 2620.3 m asl for climate region 3 (Table 2). As shown in Table 2, the mean altitudes for
climate regions 7 and 10 are relatively low at 974.8 m asl and 698 m asl, respectively. Both of
these climate regions are located in the northwestern part of the basin. In contrast, climate
regions 2, 3, 6, and 12, which are located in the eastern part of the basin, have relatively
high ranges from 2267.2 m asl and 2620.3 m asl. The results further showed the absence
of a systematic relationship between rainfall variables and altitude in the Abbay basin. In
contrast, the distribution of PET, temperature, and soil moisture displayed a systematic
relationship with altitude. In this regard, temperature and PET are relatively higher in
lowland climate regions (7 and 10) and low in highland climate regions (e.g., 2, 3, 9, and
12). On the other hand, the mean annual soil moisture amount is relatively high in the
lowland climate regions (7 and 10) and relatively low in highland climate regions (e.g., 2, 3,
9, and 12).

In general, regions 2, 3, 9, and 12 have two rain cycles; most of the climate characteris-
tics are relatively similar, except climate region 3 has early rainfall onset and longer LGP,
and climate region 9 has higher temperature values. Of the others, climate region 5 is dis-
tinct as it has a relatively longer LGP, which is attributed to the late cessation date. On the
other hand, climate region 10, followed by climate region 7, has a high PET. Furthermore,
climate regions 1 and 6 are very similar in all rainfall characteristics, except climate region
6 is slightly wetter. Similarly, all the rainfall indicators and PET amounts are relatively
similar for climate regions 2 and 9.

4. Implications for Targeting Green Water Management Technologies

This study produced data-driven homogenous climate clusters that are useful for iden-
tifying local scale climate-induced risks for rain-fed agriculture systems and for facilitating
the selection of site-specific green water management technologies in the Abbay River basin.
The assumption is that spatiotemporal climate variability is the leading environmental de-
terminant factor to the productivity of rain-fed agriculture in the basin. Climate variability
controls the practice and productivity in the rain-fed agricultural system by determining
the start and end of the farming calendar, LGP, soil moisture balance, and types of crops that
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can be grown in an area. It also relates to many risks to rain-fed agriculture, such as shortage
of water associated with seasonality of the rainfall or due to excessive evapotranspiration or
both, the occurrence of flood and soil erosion due to a high amount or intensity of rainfall or
both, water logging and soil acidity caused by the seasonal high-intensity rainfall, and soil
salinity caused by high rates of evapotranspiration. These risks can significantly constrain
rain-fed agricultural practices and crop productivity [2,5,7,9,41,42]. It is important to note
that the prevalence, severity, and effects of these climate variability-induced agricultural
challenges vary spatially across the Abbay basin [16]. Previous soil and water conservation
practices, as well as other agronomic interventions, did not achieve the intended outcomes
as they followed a one-size-fits-all top-down approach without considering regional and
local-scale climate variability [17,32].

The results generated from this study have contributed to identifying appropriate
green water management technologies to address climate-induced risks to the rain-fed
agricultural system. For example, all climate regions located in the eastern part of the basin,
except climate region three, have relatively short LGP (2.5–3.9 months), which means longer
dry periods. This suggests that agricultural productivity in these regions is constrained by
the short LGP. Some of the climate regions (2, 9, and 12) experience a bimodal (Kiremt and
Belg) rainfall pattern; the rainfall amount during the later season is too erratic, unreliable,
and exceeded by PET. In these regions, rainwater harvesting and supplementary irrigation
can be used to complement the short LGP and improve agricultural productivity.

Climate regions 2, 9, 11, and 12 have relatively high PCI (18.1–21.1), which means there
is high rainfall seasonality that can generate excessive surface runoff during the Kiremt
season. Rainwater harvesting, such as small-scale water reservoirs and well-designed
private ponds, is a useful strategy to extend the period of water availability in these
regions. Using water-efficient technologies and agronomic practices are also appropriate
interventions in these regions. It is important to note that most of these areas have dense
populations, which means a large number of the workforce remains idle for an extended
period (6.5–7.5 months) of the year. Rainwater harvesting and dry season production
activities are therefore important from the perspective of improved use of labor resources.

Many empirical studies confirm the significant contribution of small-scale irrigation to
poverty reduction [43–46] and improved food security [47–49] in the rural areas of Ethiopia.
Furthermore, the construction of rainwater harvesting schemes in regions that experience
short LGP and high PCI can reduce the frequency and intensity of flood events during the
peak rainfall season and increase groundwater storage and low flows. The presence of a
water harvesting scheme at an upper part of the river basin can significantly regulate soil
erosion and reduce sediment yields [50].

Soil management practices emerge as priority interventions in climate regions 2, 3,
9, 11, and 12, where the PCI is high. This is because high rainfall concentration results
in low infiltration and high surface runoff, causing severe soil erosion [16]. Soil acidity
management should be a top priority green water management strategy in climate regions
4, 5, 6, and 8, where annual rainfall amount is in excess of 1500 mm.

For climate regions 2, 3, 9, and 12 (all located in the eastern part of the basin), where
soil moisture contents are low (10.6–13.8 mm), soil water conservation technologies are
important interventions. Although these climate regions have bimodal rainfall cycles
(Kiremt and Belg), the Kiremt rainfall has a short duration (2.5–3.3 months), except for region
3, where the LGP is 5.1 months, and the Belg season’s rainfall is decreasing and highly
unreliable for agricultural production. A recent study by Tibebe [16] indicated that agricul-
tural productivity in the Abbay basin is negatively affected not only by the high level of
climate variability but also by the low and poor utilization and management of the avail-
able water. Hence, it is important to enhance or introduce water utilization technologies
to efficiently use the available moisture that occurs during the two rainy seasons. There
are very large areas in region 12, particularly in Semien Shewa and Debub Wollo, where
farmers cannot cultivate crops during the Kiremt season due to water logging [51]. This
problem is observed in the highland areas, where barley is the dominant type of crop. The
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water logging problem is not only caused by the occurrence of excessive rainfall but also by
the nature of the soil. Therefore, water logging management should be a top priority green
water management issue in these areas.

Opportunities extend the crop season using available moisture in those climate regions
that have relatively long LGP (3, 4, 5, 7, 8, and 10). The LGP in these climate regions varies
between 4.5 and 5.6 months, and all except region 3 are located in the western part of the
basin. It is important to target short-maturing crop varieties and other agronomic and
agro-climate services to enable crop production for more than a single season.

The climate regions 2 and 9 experience short LGP, heavy rainfall during the kiremt
season, soil erosion, and shortage of soil moisture in the dryland areas. Hence, the impact of
such multiple risks on the rain-fed agriculture should be addressed by carefully understand-
ing their co-occurrences and synergies and through targeted package-based interventions.
For example, structural measures used to protect soil erosion in moisture-stressed highland
areas can be designed in a way to enhance on-farm soil moisture and groundwater recharge
by reducing the velocity of surface runoff.

5. Conclusions

Clustering a given geographic region into homogenous climate units is important to
identify site-specific climate-related water security risks and facilitate the selection and
implementation of appropriate green water management technologies for improved pro-
ductivity of rain-fed agricultural systems. This study undertook a climate classification
scheme for the Abbay basin, where rain-fed agriculture is highly constrained by spatiotem-
poral climate variability. The k-means unsupervised clustering approach was employed
to define homogeneous climate clusters by using climate variables (daily rainfall amount,
rainfall intensity, rainfall onset and cessation dates, LGP, PCI, PET, and soil moisture) that
have determinant impacts on rain-fed agriculture.

The climate classification scheme generated 12 homogenous climate clusters for the
basin. The results are discussed with reference to climatic characteristics, potential climate-
related risks to rain-fed agriculture, and green water management options across the
identified climate clusters. The climate classification approach and results presented in
this study have multiple implications for transformative green water management by
facilitating the selection and targeted implementation of technologies tailored to local
circumstances. The overall outcome is the efficient utilization of the scarce water and land
resources and improved agricultural production and food security in the area. Furthermore,
the study provides a methodological framework that can be used in the other river basins
of Ethiopia and, indeed, elsewhere.
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