29 research outputs found
Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1
Peer reviewedPublisher PD
Krüppel-Like Factor 10 participates in cervical cancer immunoediting through transcriptional regulation of Pregnancy-Specific Beta-1 Glycoproteins
Cervical cancer (CC) is associated with alterations in immune system balance, which is primarily due to a shift from Th1 to Th2 and the unbalance of Th17/Treg cells. Using in silico DNA copy number analysis, we have demonstrated that ~20% of CC samples exhibit gain of 8q22.3 and 19q13.31; the regions of the genome that encodes the KLF10 and PSG genes, respectively. Gene expression studies demonstrated that there were no alterations in KLF10 mRNA expression, whilst the PSG2 and -5 genes were up-regulated by 1.76 and 3.97-fold respectively in CC compared to normal tissue controls. siRNA and ChIP experiments in SiHa cells have demonstrated that KLF10 participates in immune response through regulation of IL6, IL25 and PSG2 and PSG5 genes. Using cervical tissues from KLF10 mice, we have identified down-regulation of PSG17, -21 and -23 and IL11. These results suggest that KLF10 may regulate immune system response genes in cervical cancer among other functions. KLF10 and PSG copy number variations and alterations in mRNA expression levels could represent novel molecular markers in CC
Pre-synaptic C-terminal truncated tau is released from cortical synapses in Alzheimer's disease
The microtubule-associated protein tau has primarily been associated with axonal location and function; however, recent work shows tau release from neurons and suggests an important role for tau in synaptic plasticity. In our study, we measured synaptic levels of total tau using synaptosomes prepared from cryopreserved human postmortem Alzheimer's disease (AD) and control samples. Flow cytometry data show that a majority of synaptic terminals are highly immunolabeled with the total tau antibody (HT7) in both AD and control samples. Immunoblots of synaptosomal fractions reveal increases in a 20 kDa tau fragment and in tau dimers in AD synapses, and terminal-specific antibodies show that in many synaptosome samples tau lacks a C-terminus. Flow cytometry experiments to quantify the extent of C-terminal truncation reveal that only 15-25% of synaptosomes are positive for intact C-terminal tau. Potassium-induced depolarization demonstrates release of tau and tau fragments from presynaptic terminals, with increased release from AD compared to control samples. This study indicates that tau is normally highly localized to synaptic terminals in cortex where it is well-positioned to affect synaptic plasticity. Tau cleavage may facilitate tau aggregation as well as tau secretion and propagation of tau pathology from the presynaptic compartment in AD