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cerebral pathology, can now be reexamined as a direct out-
come of retinal abnormalities. As we continue to study the 
disease in the brain, the emerging field of ocular AD war-
rants further investigation of how the retina may faithfully 
reflect the neurological disease. Indeed, detection of reti-
nal AD pathology, particularly the early presenting amy-
loid biomarkers, using advanced high-resolution imaging 
techniques may allow large-scale screening and monitor-
ing of at-risk populations.

Keywords  Alzheimer’s disease · Amyloid-beta · 
Tauopathy · Retinal biomarkers · Ocular abnormalities · 
Neurodegenerative disease

Introduction

Since Alzheimer’s disease (AD)-type senile dementia was 
first described in 1905 by Alois Alzheimer, great efforts 
have been made to better understand its manifestation in 
the brain [67, 76]. The disease is characterized by a spec-
trum of cognitive and neuropsychiatric symptoms, includ-
ing severe memory loss, behavioral changes, disorientation, 
visual impairments, sleep disturbances, and, at late stages: 
difficulties walking, swallowing and, invariably, death [88, 
153]. Classical AD neuropathology involves the accumu-
lation of misfolded endogenous proteins, hallmarked as 
extracellular amyloid β-protein (Aβ) plaques, and intracel-
lular neurofibrillary tangles (NFT), which result from the 
aggregation of hyperphosphorylated tau protein (pTau) 
[11, 66, 76, 153, 165, 166]. These insidious pathologies 
can arise decades before substantial neurodegeneration 
and brain atrophy. Unfortunately, by the time symptoms 
suggestive of clinical diagnosis appear, damage may be 
too extensive for effective intervention [88]. A century 

Abstract  Although historically perceived as a disorder 
confined to the brain, our understanding of Alzheimer’s 
disease (AD) has expanded to include extra-cerebral mani-
festation, with mounting evidence of abnormalities in the 
eye. Among ocular tissues, the retina, a developmental 
outgrowth of the brain, is marked by an array of patholo-
gies in patients suffering from AD, including nerve fiber 
layer thinning, degeneration of retinal ganglion cells, and 
changes to vascular parameters. While the hallmark patho-
logical signs of AD, amyloid β-protein (Aβ) plaques and 
neurofibrillary tangles (NFT) comprising hyperphospho-
rylated tau (pTau) protein, have long been described in 
the brain, identification of these characteristic biomarkers 
in the retina has only recently been reported. In particu-
lar, Aβ deposits were discovered in post-mortem retinas 
of advanced and early stage cases of AD, in stark contrast 
to non-AD controls. Subsequent studies have reported 
elevated Aβ42/40 peptides, morphologically diverse Aβ 
plaques, and pTau in the retina. In line with the above find-
ings, animal model studies have reported retinal Aβ depos-
its and tauopathy, often correlated with local inflammation, 
retinal ganglion cell degeneration, and functional deficits. 
This review highlights the converging evidence that AD 
manifests in the eye, especially in the retina, which can be 
imaged directly and non-invasively. Visual dysfunction in 
AD patients, traditionally attributed to well-documented 
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following its first report, AD and associated dementia are 
estimated to afflict 47 million people worldwide, a number 
projected to triple by 2050 [15]. This age-dependent epi-
demic is a major concern for the aging population, with an 
incidence that rises sharply after 65 years of age, affecting 
roughly 50 % of individuals aged 85 and older [51].

Clinical, genetic, physiologic, and biochemical evidence 
suggest that the primary and earliest pathological event 
leading to AD is the accumulation of Aβ in the brain, which 
appears as a net result of imbalance between production 
and clearance [76, 88, 127, 153, 166]. Amyloid β-protein 
precursor (AβPP), a large transmembrane protein, under-
goes multiple cleavage events to generate Aβ peptides [76, 
165]. According to the prevalent amyloid hypothesis of AD, 
the disease-associated amyloidogenic pathway involves 
cleavage by both β-secretase and γ-secretase to produce the 
longer, aggregation-prone Aβ40 and Aβ42 alloforms [76, 85, 
165]. Aβ42, which is more specifically associated with AD, 
may exert its neurotoxic and cognitively detrimental effects 
through an array of conformational structures, ranging 
from small, soluble oligomers to insoluble fibrils that often 
culminate in degenerating neurites, termed senile (neuritic) 
plaques [76, 156, 165, 166]. Our expanding knowledge 
of tauopathy in AD brains, including intracellular tangles 
and threads of aggregated pTau, has grown to encompass a 
diversity of extracellular soluble and insoluble assemblies, 
which may induce seed-like self-propagation into synapti-
cally dense regions [11, 33, 66, 77, 84, 94, 182]. Currently, 
the detection of plaques and NFTs by histological brain 
examination at autopsy provides the most definitive diag-
nosis of AD [4, 55, 76, 81, 88, 95, 166]. Although plaque 
burden may plateau at a presymptomatic stage of the dis-
ease, obscuring its relationship with disease progression, it 
is postulated that the early assemblies of misfolded Aβ also 
elicit chronic, low-grade neuroinflammation that correlates 
with cognitive decline [27, 131, 153, 169, 186].

Modern brain-imaging techniques, such as magnetic 
resonance imaging, that detect cerebral atrophy or measure 
functional metabolic changes are instrumental in differen-
tiating healthy aging from pathological conditions [29, 43, 
54]. However, these tissue alterations are common to many 
neurodegenerative disorders, and thus cannot be used to 
unequivocally distinguish AD from other types of dementia 
[96, 153]. Advanced positron emission tomography (PET) 
brain imaging of hallmark amyloid and tau AD pathology 
using various radioactive tracers (e.g., 11C-Pittsburgh com-
pound B, PiB [125], 18F-florbetapir [45], 18F-flutemetamol 
[80], 18F-florbetaben [173], 18F-TKH5105, and 18F-T807 
[89]) provides disease specificity and facilitates ongo-
ing research. However, it may be difficult to deploy this 
technology for population-wide screening of preclinical 
signs due to high cost, necessity of using radioactive iso-
topes, limited resolution, and the resulting unfeasibility of 

longitudinal studies [144]. Should screening become possi-
ble, early stage intervention at the level of Aβ aggregation, 
pTau, synaptic dysfunction, and inflammation may allow 
clinicians to modulate disease progression. To better serve 
the population at risk for developing AD, new methods of 
definitive and non-invasive diagnosis are needed.

With various reports of retinal structural deficits, other 
ocular abnormalities, and even visual dysfunctions experi-
enced by AD patients [19–22, 31, 35, 59, 60, 69, 81, 90, 97, 
98, 107, 108, 113, 130, 163, 180], it is no surprise that the 
field has begun shifting its attention to the eye as a site of 
AD manifestation. The retina is a CNS tissue originating in 
the developing diencephalon, and it contains high-density 
neuronal cells and fibers that form a sensory extension of 
the brain [25]. It also shares many structural and functional 
features with the brain, including the presence of neurons, 
glial cells, a blood barrier, and similar cell-fate specifica-
tion of embryonically related tissues as well as tight regu-
lation of endothelial cell proliferation [25, 126, 176]. Fur-
thermore, axons of the optic nerve connect the retina to the 
brain directly and facilitate the transportation of AβPP syn-
thesized in RGCs in small transport vesicles [136].

The first evidence of nerve degeneration in the human 
AD eye was reported by Hinton et al., in 1986 [81]. Since 
then, the reports of retinal pathology in patients with AD 
have grown to include RGC loss, NFL atrophy, thinning of 
the macular ganglion cell complex, and widespread axonal 
degeneration in the optic nerve [17, 19, 21, 22, 38, 73, 81, 
92, 97, 147, 174]. Other changes, such as blood flow rate 
[19, 50, 59, 183], signs of inflammation [20, 21], and var-
ied cellular degeneration mirroring those observed in the 
AD brain may reflect cerebral pathology [21, 76, 128, 186], 
but do not indicate AD as strongly as disease hallmarks. 
However, the subsequent identification of retinal Aβ plaque 
pathology was specific to AD patients and early stage 
cases, and matched amyloid pathology in the brain [107]. 
This was further validated by other independent studies on 
AD patients [1, 113, 178] that parallel findings in animal 
models of the disease. The latter, predominantly involving 
transgenic (Tg) rodents, reported similar retinal patterns, 
where Aβ deposits often colocalize with sites of apoptosis, 
neuroinflammation, impairments of function and structure, 
and plaque formation that even precedes that seen in the 
brain [46, 107, 108, 139, 148, 149, 152].

As the only CNS tissue not shielded by bone, the retina 
offers unique access for direct and non-invasive imaging to 
study possible pathological changes in the brain. Moreo-
ver, since recent studies suggest that other diseases, such 
as multiple sclerosis, ischemic stroke, and Parkinson’s dis-
ease, also exhibit retinal abnormalities similar to the cere-
bral pathologies observed, the retina represents an appeal-
ing target to detect neurodegenerative disease [7, 26, 143]. 
The evidence of Aβ accumulation in early stage cases and 
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amyloid-related neurodegeneration in the AD retina [107, 
113] may support its status as a site of presymptomatic 
stage imaging, and even suggests that Alzheimer’s is both 
a cerebral and an ocular disease. This review provides an 
updated report of ocular hallmark pathologies and other 
abnormalities observed in patients and animal models of 
AD, as well as methods used to detect these changes in vivo 
and to monitor them in response to therapeutic intervention.

Hallmark pathology in ocular tissues of AD 
patients

As established cerebral hallmarks of AD, Aβ and pTau pro-
tein aggregates most strongly indicate the occurrence of the 
disease [76, 77, 159, 165, 166]. Nearly a century following 
the first description of these signs in the brain, documen-
tation of their manifestation in ocular tissues has begun to 
emerge [1, 69, 91, 100, 107, 113, 163, 178]. Table 1 pre-
sents key findings from research on hallmark AD pathology 
in the ocular tissues of human patients.

Before amyloid-related aggregation was shown in the 
AD-afflicted eye, Aβ immunoreactivity in the sub-retinal 
pigment epithelium (RPE) was reported in normal aged 
eyes by Loeffler et al. [119]. While the study did not exam-
ine eyes from AD patients, Goldstein et  al. [69] reported 
the detection of Aβ nanoaggregates in the human AD lens, 
a non-CNS tissue. Notably though, it was not until 2010 
that Koronyo-Hamaoui and colleagues (2011) were able 
to demonstrate the existence of extra-cerebral Aβ deposits 
in the human AD retina, a CNS tissue [107]. Sequence-
specific monoclonal antibodies and amyloid conformation-
detecting compounds (i.e., curcumin and thioflavin-S) were 
used to identify Aβ deposits in flat-mount retinas from 
definite AD patients and suspected early stage cases [107]. 
In this study, AD diagnosis was determined by pre-mor-
tem cognitive assessment and a detailed neuropathologi-
cal report assessing existence of cerebral neuritic plaques, 
neurofibrillary tangles, neuropil threads, and amyloid angi-
opathy; age- and gender-matched non-AD controls did not 
meet these criteria. Subsequent studies revealed that retinal 
plaques possibly associate with blood vessels in the supe-
rior quadrant and exhibit a morphological array similar to 
amyloid pathology observed in the brain [107, 113, 178]. 
In retinas from human patients, Aβ deposits with single or 
multiple compact globular cores appeared more frequently 
than classical plaques with central Aβ cores and radiat-
ing fibrils [107]. Examples of extracellular Aβ plaques, 
containing Aβ40  and Aβ42  alloforms, and intracellular 
Aβ40 immunoreactivity detected by several labeling tech-
niques in retinas of AD patients in contrast to age-matched 
controls  are shown in Fig.  1; unpublished data and data 
reported in La Morgia and colleagues [113].

Shortly thereafter, a study by Alexandrov et al. [1] that 
used both biochemical methods and histological examina-
tion of post-mortem eyes provided evidence for increased 
Aβ peptide levels, particularly Aβ42, in retinas from AD 
patients (Table  1). In addition, AβPP immunoreactivity 
was elevated in AD retinas, justifying the expected eleva-
tion of Aβ40 and Aβ42 peptides, as well as the resulting 
formation of amyloid plaques [1]. In 2014, Aβ plaque-like 
structures morphologically denser than those observed in a 
Tg rat brain in the same study were described in two reti-
nas from AD patients [178]. Later that year, in vivo detec-
tion of amyloid deposits in AD retinas using a method of 
guided optical coherence tomography (OCT) was reported. 
Findings included mostly perimacular and perivascular 
spots in the outer plexiform layer (OPL), ganglion cell 
layer (GCL), and NFL [100].

More recently, La Morgia and colleagues (2016) further 
demonstrated the appearance of classical and morphologi-
cally diverse Aβ aggregates, which often appear in clusters 
in retinal flat-mounts from definite AD patients. Impor-
tantly, this study was the first to report the accumulation of 
Aβ deposits in and around degenerating melanopsin retinal 
ganglion cells (mRGC), further suggesting that Aβ is toxic 
to retinal cells. Colocalized Aβ immunoreactivity was also 
detected in degenerating neurites of mRGCs [113]. Figure 2 
illustrates AD-related ocular findings in the human eye, with 
an emphasis on the retina. In addition to the above find-
ings, the evidence of the neurotoxicity of Aβ to retinal cells 
has been shown in various investigations. Cell-line studies 
have demonstrated Aβ-induced RGC cell death and RPE 
senescence [28, 179]. Animal model studies have shown 
RGC apoptosis accompanied by and colocalizing with Aβ 
deposits in retinas from rodent models of AD or glaucoma, 
while the reduction of Aβ levels by immunization led to 
the structural preservation of the RPE and visual protec-
tion in a murine model of Age-related Macular Degenera-
tion (AMD), suggesting that Aβ causes neurodegeneration 
in these models [44, 74, 139]. Furthermore, a study reported 
that retinal Aβ injection induced photoreceptor degeneration 
in a wild type (WT) mouse, and that exposing RPE cells to 
Aβ in vitro reduced mitochondrial redox potential and pro-
duction of reactive oxygen species [24].

In addition to growing reports of retinal Aβ accumula-
tion, one study has reported hallmark pTau in the retina, 
while another has reported indirect indication of pTau 
[91, 163]. A notable study by Schön et al. [163] provided 
the first evidence of pTau in retinal cross sections of AD 
patients, particularly in the innermost layers  (Fig.  2), 
although the group was unable to detect fibrillar Tau and 
Aβ aggregates. Tau hyperphosphorylation was detected 
by anti-AT8 immunoreactivity, which binds phosphoryl-
ated groups at Ser202 and Thr205 [163]. A subsequent 
study showed significant evidence that changes in retinal 
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Fig. 1   Flat-mount retinas from AD patients exhibit the accumula-
tion of Aβ deposits. a–c Representative microscopic images from 
a definite AD patient (74  years) and a matched control individual 
(CTRL; 71  years) stained with anti-Aβ42  C-terminal-specific anti-
body (12F4) and visualized with peroxidase-based labeling (DAB). 
Blood vessel structures seen as lighter lanes. c Classical mature Aβ 
plaques observed along a retinal blood vessel. d, e Fluoresence labe-
ling of Aβ42-containing deposits  detected in retina of AD patient 

(yellow), using curcumin (green), 12F4 antibody (red), and DAPI 
nuclear staining (blue). Sudan Black B (SBB) is used to quench non-
specific autofluorescent signal. f Compact extracellular Aβ plaque 
and cytosolic Aβ40 accumulations observed following curcumin and 
anti-Aβ40 C-terminal-specific antibody (11A5-B10) staining in post-
mortem retinas of AD patients. Arrows indicate various types of Aβ 
plaques. Images a-c adopted from La Morgia et al., Annals of Neurol-
ogy, vol. 79, no. 1, pp. 90–109, 2015

Fig. 2   Manifestations of AD 
in the Human Retina. a Visual 
pathway. b Eye-sagittal plane. 
c Retinal flat-mount shows 
the geometric distribution of 
pathology by quadrant with 
more consistent findings of 
NFL thinning indicated by 
darker shading. d Cross section 
of retina and adjacent ocular 
tissues shows the distribution 
of pathology by tissue layer. 
Aβ amyloid beta-protein, pTau 
phosphorylated tau, NFL nerve 
fiber layer, GCL ganglion cell 
layer, IPL inner plexiform 
layer, INL inner nuclear layer, 
OPL outer plexiform layer, 
ONL outer nuclear layer, ILM 
inner limiting membrane, OLM 
outer limiting membrane, IS/
OS inner and outer segments of 
photoreceptor layer, RPE retinal 
pigment epithelium, P. Pole pos-
terior pole
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fluorescent lifetime imaging ophthalmoscopy correlate with 
total Tau and pTau-181 concentration in the cerebrospinal 
fluid  (CSF) [91]. On the other hand, a study employing 
the standard staining protocols for brain tissues, was una-
ble to detect aggregates of Aβ, pTau, or α-synuclein upon 
examination of retinal cross sections and other ocular tis-
sues from AD and Parkinson’s disease (PD) patients [82]. 
It is important to note, however, that studies from eight 
independent groups examining eyes from AD patients have 
consistently found retinal tauopathy and increased forma-
tion of Aβ deposits in retinas and lenses [1, 69, 101, 102, 
107, 113, 133, 163, 178], and  two recent studies examin-
ing retinas from patients with PD or Tg mice modeling PD 
and Dementia with Lewy Bodies reported the presence of 
misfolded α-synuclein within the inner retinal layers, along 
with impaired vision [23, 155].

Although outnumbered by evidence of changes in the 
neurosensory retina, a CNS tissue, some studies have 
reported the detection of Aβ peptides and nanoaggregrates 
in non-CNS ocular tissues. These include the description 
of amyloid-related changes to the human AD and Down’s 
Syndrome (DS) lens, including AβPP immunoreactiv-
ity and Aβ nanoaggregation in supranuclear, cortical, and 
anterior epithelial subregions of the lens [69, 101, 133]. 
Individuals with DS, in which chromosome 21 trisomy 
results in triple copies of the AβPP gene, are at increased 
risk for early onset AD, and as such offer valuable data 
pertaining to the disease [185]. Interestingly, one of these 
studies reported that Aβ burden in the lens of a 2-year-old 
DS individual was comparable with those observed in a 
57-year-old familial AD patient and an 85-year-old spo-
radic AD patient [133]. In a recent study, in vivo detection 
of Aβ was reported in the lens, with a technique later used 
to successfully predict clinical AD diagnoses [101, 102]. 
Another report of non-CNS Aβ accumulation describes 
detection in the aqueous humor [69]. In contrast to the 
above findings, one study specifically reported no Aβ 
immunoreactivity in lenses and corneas from post-mortem 
AD donors [132]. While the accessibility of the lens has 
inspired enthusiastic study and subsequent reports of char-
acteristic AD pathology, one must consider the degree to 
which lenticular and other non-CNS protein aggregates 
can accurately reflect cerebral amyloid burden during dis-
ease progression and in response to therapy.

As discussed above, recent studies have shown that cer-
tain tissues of the eye, particularly specific regions of the 
retina, present an abundance of characteristic AD pathol-
ogy. Among these, parameters of amyloid aggregation cou-
pled with RGC degeneration in the superior quadrant of the 
innermost retinal layers (i.e., NFL and GCL) might distin-
guish ocular pathology specific to AD from that observed 
in other neurodegenerative diseases, such as AMD and 
glaucoma [92, 93, 116, 120]. The evidence of key AD 

biomarkers Aβ and pTau in the neuroretina urges further 
exploration of Alzheimer’s in this ocular tissue.

Non‑specific ocular abnormalities in AD patients

In addition to hallmark biomarkers, the complex pathology 
of AD manifests as an array of ocular abnormalities, many 
of which have been repeatedly observed in AD patients. In 
this section, we explore cellular, structural, vascular, and 
other changes that may be associated with increased neuro-
toxic Aβ in the AD-affected eye (Table 1).

Pathological changes in the AD eye were first docu-
mented in 1986, when Hinton and colleagues reported 
optic nerve degeneration, a decrease in ganglion cell 
numbers, and thinning of the NFL [81]. Further reports 
of GCL pathology described the severe degeneration of 
RGCs, including a phenotype of vacuolated mitochondria 
and nerve fiber cell degeneration. The evidence of AD-
related GCL degeneration has been accumulating since 
then, including a report of 25 % neuronal loss in the GCL, 
with the greatest losses noted in the superior and inferior 
retinal quadrants [20–22, 38]. Interestingly, two of these 
studies reported that while GCL loss is age-dependent in 
control retinas, it does not correlate with age in the AD 
eye [22, 38]. Sadun and colleagues [160] reported a loss of 
the largest caliber fibers in the optic nerve and degenera-
tion of RGCs. Further studies of the AD eye have followed, 
reporting NFL and macular thinning, as well as optic 
nerve degeneration. Findings of NFL thinning have indi-
cated a significant reduction of thickness among quadrants 
of this tissue layer [10, 13, 19, 34, 62, 87, 104, 106, 113, 
114, 124, 135, 145–147, 167], although some findings did 
not reach statistical significance [1, 50, 79, 91, 110, 111, 
167]. A small number of studies have provided evidence 
against NFL thinning. Two of these studies reported no 
change in NFL thickness compared with controls [91, 103]. 
In another study, age was found to be the greatest factor 
contributing to NFL thickness, while AD patients showed 
no significant thinning in comparison to controls [111]. 
Although reports of NFL thinning vary, there appears to be 
an overwhelming majority of evidence supporting a signifi-
cant thinning of the superior quadrant of the NFL in the AD 
retina (Fig. 2) [19, 62, 79, 87, 104, 110, 113, 118, 121, 137, 
142, 145–147, 160, 177].

Interestingly, NFL thinning has been correlated with 
an abnormal pattern electroretinography (pERG) response 
[146]. More recently, two studies reported a correlation 
between degree of cognitive impairment and either NFL 
thinning or macular volume reduction [87, 142]. Other 
findings have indicated that AD patients and control sub-
jects show no significant differences when comparing the 
latency of visual evoked potential (VEP) P100 component 
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[87], and no correlation between NFL thinning and Mini-
Mental State Examination (MMSE) score [62]. Data show-
ing NFL thinning and macula lutea reduction in AD seem 
to mirror results from studies on MCI [62, 104, 145]. While 
degeneration has been observed most notably in the NFL 
and GCL, it has also been observed in the inner nuclear 
layer (INL) [178]. It appears that the innermost layers of 
the retina show greater and more significant thinning than 
the outer retinal layers [17] (Fig. 2). A recent meta-analy-
sis of NFL thinning in AD patients, including many of the 
above-described studies, reported that, after correction for 
varied methodology, the field shows consensus for a signifi-
cant mean thinning of the NFL in AD [34]. While research 
strongly suggests that NFL measurement may be useful 
for the early diagnosis and evaluation of disease progres-
sion [87], further study is needed to optimize the utility of 
this method as a specific ocular biomarker of the disease. 
More recently, in a clinical study on AD patients exhibit-
ing circadian abnormalities, La Morgia and colleagues 
(2016) described NFL thinning in the superior quadrant, 
measured by OCT [113]. More importantly, this study 
described degeneration specific to a photoreceptor subtype,  
mRGC,  which  makes up 1–2  % of all RGCs [112, 113]. 
Degenerating mRGCs were associated with Aβ deposits 
within and around mRGCs in post-mortem retinas from AD 
patients [113]. The mRGCs are known to modulate circa-
dian photoentrainment by projecting to the hypothalamus 
suprachiasmatic nucleus (SCN), the circadian pacemaker of 
the brain [112]. This study may provide the first mechanis-
tic explanation for the circadian dysfunction often reported 
in AD patients [113].

Since 2007, numerous findings of retinal angiopathy and 
other related vascular changes have also been documented 
in AD patients. These changes include narrowed veins, 
reduction of blood flow, vascular attenuation, increased 
width variation, reduction of branching complexity and 
optimality, smaller fractal dimensions, and changes in tor-
tuosity [19, 32, 50, 59, 183]. A recent study by Einarsdot-
tir et al. [49] reported that although vascular diameter was 
not changed, blood oxygen saturation was notably elevated 
in the AD retina with oximetry data closely matching that 
seen in AMD.

An interesting abnormality observed in the retina relates 
to the abnormal expression of members of the synuclein 
family of proteins (α-, β-, and γ-synuclein), with a retinal 
layer occurrence in AD patients distinct from that seen in 
healthy individuals [170].

One aspect of ocular pathology that has been repeat-
edly documented in AD patients is a significant elevation 
of cup-to-disc ratio, with one study reporting a threefold 
increase [16, 40, 121, 171, 177]. Interestingly, since cup-to-
disc ratio is used to measure the progression of glaucoma 
[3], a number of investigations have explored the potential 

connection between glaucoma and AD. Two of these stud-
ies examined AD patients and found a relationship with one 
reporting that 25.9 % of the sample was positive for glau-
coma, a condition that is only prevalent in about 5 % of the 
general population [16, 171]. Conversely, two recent stud-
ies that examined the risk of glaucoma patients developing 
AD found no relationship [12, 105]. Recently, optic disc 
color pallor, indicative of axon loss, has been investigated 
as a potential biomarker, given that the optic discs of AD 
patients show a significant paleness compared with those 
of controls [13]. In light of overlap between AD and glau-
coma, some researchers have even termed glaucoma “Ocu-
lar AD” [16, 129]. However, apparent differences between 
glaucoma and the ocular manifestations of AD challenge 
such a notion. While glaucoma shows optic disc cupping 
accompanied by a specific pattern of loss in the optic nerve 
and GCL [3, 41], the ocular findings in AD have over-
whelmingly indicated damage to the NFL and GCL along 
with hallmark molecular signs in peripheral retinal regions 
[20–22, 81, 107, 113, 163]. Since evidence linking the two 
diseases remains controversial, further research would 
be warranted before claims of common etiology could be 
made about these diseases.

Although most research on ocular degeneration in AD 
has focused on CNS tissues like the retina, a number of 
studies have reported changes in lenses of the AD and DS 
eyes. Reports have indicated supranuclear and deep corti-
cal cataracts, opacity due to increased light scattering, and 
other changes that may be associated with the findings of 
Aβ peptides in the lens [49, 69, 101, 102, 133]. On the 
other hand, a study that examined amyloidopathy in corti-
cal cataracts was unable to detect Aβ in lenses of patients 
with and without AD [132]. Studies examining changes in 
the AD eye have also reported significant thinning of the 
choroid [17, 63, 178].

Visual dysfunction in AD patients and animal 
models

Among the earliest symptoms documented in some AD 
patients are visual impairments, especially loss of contrast 
and color sensitivity, limited visual field, compromised vis-
ual attention, reduced stereopsis, deficits in the perception 
of shape from motion, and impaired object and face rec-
ognition [9, 31, 90, 97, 138, 140, 161, 162, 174]. However, 
unlike well-established retinal structural deficits, various 
changes in visual function appear to manifest inconsist-
ently across AD patients, and further study should expand 
upon the currently limited findings.

While many aspects of visual acuity, such as recogni-
tion, localization, and target detection, were not found to 
be significantly different in AD patients when compared 
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with controls [31, 90], loss of contrast sensitivity was 
markedly different [64, 90, 157]. Since the latter param-
eter may be detected clinically in a routine eye examina-
tion, it may serve as a biomarker for AD-related neurode-
generation [31]. However, loss of color sensitivity and the 
possibility of using this parameter to determine AD status 
remain highly controversial [9, 31]. Abnormal visual field 
has also been correlated with disease severity, with AD 
patients showing sensitivity loss greater than controls [31, 
90, 175]. Deficits in motion perception have been associ-
ated with severity of dementia, and evidence suggests that 
AD patients may have impaired motion sensitivity due to 
selective damage to the magnocellular pathway [31, 65, 
83, 99]. Although reduced depth perception and stereop-
sis have been linked with cognitive impairment, opinions 
regarding the effect of stereopsis in AD patients are mixed 
[31, 115, 158]. Finally, saccadic eye movement is among 
the most well-described deficits to ocular motor function 
in AD patients [36, 53]. Nevertheless, related visual dys-
function, such as pupil size and pupillary light reflexes are 
not exclusive to AD and may also be found in healthy older 
individuals and in other neurological conditions such as PD 
[71].

Thus far, other functional changes detected through 
electrophysiology techniques have been limited but offer 
unexpected clues to the roots of visual abnormalities aris-
ing from neuroretinal dysfunction. Delayed pace of pro-
cessing, measured by responsiveness of pERG, has been 
documented in AD patients [146, 147]. A study examining 
pattern VEP in AD patients found no significant difference 
between the AD and non-AD groups and no correlation 
with MMSE score [87]. Additional reports of AD-related 
electrophysiology deficits have come from animal model 
studies, showing abnormal flash VEP measurements in 
APPSWE/PS1ΔE9 mice [61]. Two studies reporting ERG 
measurements in 5xFAD and APPSWE/PS1ΔE9 mice found 
that the response was not significantly different between Tg 
and WT groups, but was instead correlated with age [150, 
152].

While data regarding visual dysfunction have not been 
definitive, recent findings show a promising connection 
between circadian rhythm and retinal neuronal degenera-
tion. La Morgia and colleagues (2016) reported that a sub-
group of AD patients suffers from significantly reduced 
sleep efficiency due to circadian rhythm disruption that 
may be caused by RGC loss and Aβ toxicity in the retina 
[113]. This study diverges from the historical attribution 
of visual and ocular-related dysfunctions in AD patients to 
brain abnormalities [112, 113].

Although most of these changes are modest in magni-
tude, taken together they may impact daily activity and cog-
nitive performance significantly. These studies suggest that 
visual abnormalities in AD, historically attributed to brain 

pathology, may arise directly from pathology in the retina, 
such as Aβ- and tau-derived neurodegeneration, optic nerve 
atrophy, inflammation, and vascular attenuation. As we 
continue to explore potential treatment, growing evidence 
of the ocular aspects of AD suggests that therapeutic inter-
vention should address visual as well as cognitive dysfunc-
tions. Mitigation of deficits, such as contrast insensitivity, 
delayed pace of processing, and retinally regulated circa-
dian functions, could meaningfully improve quality-of-life 
for those suffering from this debilitating disease.

Ocular findings shared by AD and AMD

Certain similarities between AD and AMD have drawn 
attention to a potential connection between these degen-
erative conditions. AMD is an ocular disease character-
ized by sub-RPE drusen deposits, thickening of Bruch’s 
membrane, and degeneration of the RPE and photorecep-
tors within the macula centralis [2]. Like AD, the risk of 
developing AMD increases exponentially with age [58, 
141]. As AMD progresses, patients show central visual 
field loss [2, 141], which differs from the inferior visual 
field loss described in some AD patients [175]. The pri-
mary degeneration noted in AMD typically takes place 
in the photoreceptors of the macula and in the underlying 
RPE, while AD retinas primarily show degeneration in the 
GCL and NFL [10, 13, 19, 21, 22, 34, 62, 81, 87, 104, 106, 
113, 114, 124, 135, 145–147, 167]. Interestingly, Aβ has 
been detected in the eyes of both AMD and AD patients, 
within drusen deposits in AMD [42, 122] and as the pri-
mary constituent of extracellular fibrillar plaques in AD 
retinas [107, 113]. In the report by Dentchev et  al. [42], 
Aβ was detected in drusen deposits in the retinas of 4 out 
of 9 AMD patients, but not in drusen deposits from nor-
mal eyes. Another study examining drusen deposits did not 
find amyloid fibrils within drusen, but identified amyloi-
dogenic oligomers, suggesting that Aβ oligomers may be 
involved in the biogenesis of drusen deposits [122]. Inter-
estingly, in an earlier study by Loeffler et al. [119], patchy 
Aβ immunoreactivity was detected in sub-RPE deposits 
in eyes from normal older persons but not in retinas from 
patients with AMD. These deposits corresponded to either 
soft drusen or basal linear deposits [119]. Other abnormal-
ities common to AMD [156, 168] have also been observed 
in the eyes of AD patients, including abnormal retinal 
blood circulation [19], vascular changes [58, 141], reduced 
NFL thickness [145], foveal RGC degeneration [20], and 
choroidal thinning [63].

In the 5xFAD Tg mouse model, RPE degeneration, which 
is also characteristic of AMD, has been reported in two 
recent studies [148, 150], one of which even found drusen-
like deposits and Bruch’s membrane thickening [148].
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Multiple genetic studies on these diseases have revealed 
a tight connection to the ApoE gene. However, while the 
associated risk of sporadic AD increases with the ApoE4 
allele and decreases with the ApoE2 allele, the opposite has 
been observed in AMD (reviewed in [168]). Shared com-
ponents of the complement system, a part of innate immu-
nity, suggest that common inflammatory mechanisms are 
involved in AD and AMD. In addition, the oxidative stress 
experienced by photoreceptors of AMD patients is mirrored 
by the AD brain as increased reactive oxygen species, oxi-
dative damage, and mitochondrial dysfunction [168]. Taken 
together, the findings of AD and AMD commonalities 
suggest a degree of overlap, yet, key differences in retinal 
layer and geometric distribution of hallmark pathologies 
warrant further investigation towards defining differential 
diagnosis.

AD‑specific ocular pathology in animal models

Recent work on animal models of AD has shed light on the 
biological role of AβPP, soluble Aβ peptides, insoluble Aβ 
aggregates, and pTau species in the eye. Advances include 
the identification of the species and aggregates that may 
interfere with essential cellular mechanisms at early stages 
of the disease. This section summarizes the current findings 
of characteristic AD abnormalities in the eyes of rodent and 
fly models of the disease (Table 2).

AβPP immunoreactivity has been detected in the eye 
in a number of AD animal models. These include sev-
eral Tg strains of drosophila, established Tg mouse mod-
els (Tg2576, hTgAPPtg/tg, APPSWE/PS1ΔE9, and APPSWE/
PS1M146L/L286V), and Octodon degus (O. degus), a WT 
rodent native to Chile that exhibits symptoms of sporadic 
AD [8, 46, 47, 56, 117, 139, 188]. Specifically, animal 
model findings of cytoplasmic AβPP in the photorecep-
tor layer have been shown to increase in Tg rodents [47, 
139], while in O. degus, AβPP expression was shown to 
decrease with age [46]. Strong AβPP and mRNA transcript 
signals have been reported in the cornea and lens [47, 56]. 
A drosophila model study has provided additional support 
for ocular AβPP in AD models, reporting the ubiquitous 
expression of AβPP in the compound eye [72].

The elevation of soluble and insoluble Aβ peptide lev-
els has been observed in AD animal models, where the 
increase is age-dependent and corresponds to disease 
progression. These include the Tg2576, APP/PS1, 3xTg, 
5xFAD mice, the TgF344-AD rat, and O. degus [1, 46–
48, 107, 117, 134, 148, 150, 152, 154, 178, 184]. It has 
been reported that levels of Aβ40 and particularly Aβ42 
are elevated in the retina, as well as in the lens, vitreous 
humor, and choroid of AD rodent models (Table  2) [1, 
46, 47, 117, 148, 150, 154, 178, 184]. Interestingly, in a 

study examining the effects of metal in the diet, retinal Aβ 
abundance was found to increase dramatically in an alu-
minum-fed 5xFAD mouse [154]. The potential involve-
ment of metal in AD has been reported before [37, 172]. 
In two other studies using the 5xFAD mouse, retinal Aβ40 
and Aβ42 elevation were reported, with notable detec-
tion in the RPE [148, 150]. In the Tg2576 and APPSWE/
PS1ΔE9 mice, possible cytoplasmic Aβ elevation has been 
documented in the INL, within vacuolar structures in the 
peripheral GCL, and in the cornea and lens [47]. Interest-
ingly, in this study, enzyme-linked immunosorbent assay 
(ELISA), other  biochemical assays, and immunohisto-
chemistry (IHC) yielded very different results regarding 
the presence of Aβ peptide in the retina. The AD bio-
marker was not successfully detected by every method, 
but definitive evidence was ultimately provided by IHC 
and ELISA [47]. Two additional studies examining dros-
ophila models of AD have also provided support for the 
elevation of ocular Aβ peptides [30, 52]. The diverse find-
ings in the studies above emphasize how varied method-
ologies have driven controversy regarding the detection of 
AD hallmarks in the eye.

Deposits of insoluble Aβ species and subsequent 
plaque formation have been documented in the retinas of 
Tg2576, APPSWE/PS1ΔE9, APPSWE/PS1M146L/L286V, 3xTg, 
and 5xFAD mice, as well as O. degus [1, 46–48, 107, 108, 
117, 134, 139, 152, 184, 187, 188]. In the Tg2576 mouse, 
plaques have been identified most consistently in retinal 
layers ranging from the GCL to the ONL, and rarely in 
the photoreceptors and optic nerve [117, 184]. In both the 
APPSWE/PS1ΔE9 mouse and Tg344F-AD rat models, which 
share the same double transgenes, plaques and extracellular 
deposits have been identified in retinal layers ranging from 
the NFL to the INL, and even in the sclera and choroid [107, 
139, 152, 178]. Importantly, Aβ plaques were detected in 
the retina of APPSWE/PS1ΔE9 mice as early as 2.5 months 
of age, 2–3  months prior to their cerebral counterparts 
[107]. Another study compared plaque load between male 
and female mice, and found that in old mice, between 12 
and 16  months of age, a significantly greater number of 
female APPSWE/PS1ΔE9 mice exhibited retinal plaque for-
mation compared with age-matched males [152]. In O. 
degus, a natural model of sporadic AD, Aβ deposits have 
been observed in the NFL, GCL, and photoreceptors of 
young animals, while aged animals show intense Aβ stain-
ing throughout all retinal layers [46, 86]. The study also 
reported that the staining of deposits and oligomeric Aβ 
occurred most intensely in the central retina. In addition, 
the group noted that while Aβ deposits were confirmed by 
other means, Congo red did not provide an accurate detec-
tion of Aβ [46]. Additional evidence for ocular Aβ deposits 
and senile plaques has been documented in studies using 
AD drosophila models [30, 72]. Aβ specifically deposited 
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in and around ocular vasculature, sometimes in association 
with damaged capillaries, has been detected in the retinas 
and choroids of APPSWE/PS1ΔE9 mice and Tg344F-AD rats 
[47, 117, 139, 178]. Despite a majority agreement on Aβ 
elevation in the eyes of AD animal models, one study using 
animal models positive for cerebral plaques was unable to 
detect Aβ plaques in the eye [47].

Evidence of pTau has been observed from the GCL to 
the ONL in the Tg2576 mouse and in the soma of RGCs 
in the APPSWE/PS1ΔE9 mouse (Table  2) [117, 187]. In O. 
degus, pTau expression has been reported primarily in the 
NFL and GCL [46]. In the UAS-Gal4 drosophila model of 
AD, Tau species at various degrees of phosphorylation have 
been detected in the retina [70]. In addition to pTau species, 
NFTs have also been detected in the retinas of APPSWE/
PS1M146L/L286V mice [78, 188].

Non‑specific ocular abnormalities in animal 
models of AD

Additional ocular changes have been reported in AD ani-
mal models, including retinal degeneration, inflamma-
tion, structural alterations, and other changes that may be 
associated with Aβ elevation and deposit formation. Many 
of these findings mirror those recorded in AD patients 
(Table 3) [5, 6, 30, 39, 48, 52, 56, 72, 117, 123, 139, 148, 
152, 154, 178, 184].

A number of studies have reported that retinal tissues in 
rodent models presenting the elevation of the neurotoxic 
Aβ peptide also show significant degeneration compared 
with those of control animals [56, 148, 178, 187]. An array 
of degenerative markers has been documented in differ-
ent animal models. Cellular swelling, nuclear disorganiza-
tion, shape irregularity, and organelle loss in cortical fiber 
cells have been observed in the lens of an hTgAPPtg/tg 
mouse [56]. The RPE has shown hypopigmentation, large 
vacuoles, and Bruch’s membrane thickening with drusen-
like deposits in a 5xFAD mouse [148], as well as hyper-
trophy in the TgF344-AD rat [178]. RGC distribution in 
the retina of APPSWE/PS1ΔE9 mice is sparse and overall 
numbers show a significant decrease when compared with 
matched WT controls [61, 75]. Amacrine cell apoptosis has 
also been noted in the retina of the APPSWE/PS1ΔE9 mouse 
[61]. Evidence from drosophila studies supportive of ocular 
degeneration in AD models has indicated severe photore-
ceptor abnormality, lens fission, and axonal degeneration in 
the optic nerve [30, 39, 52, 72].

Inflammatory processes are well documented in the 
brains of AD patients [68, 128, 186]. In 2008, Ning and col-
leagues were the first to show that the accumulation of Aβ 
in the retina of Tg mice was associated with neurodegener-
ation and inflammation [139]. Since then, several reports of 

ocular inflammation in rodent models of AD have indicated 
increases in microgliosis, GFAP+ astrogliosis, retinal infil-
tration of lymphocytes and monocytes, and upregulation of 
MCP-1, among other markers in many layers of the retina 
and choroid [6, 48, 61, 117, 139, 152, 154, 178, 187].

Structural changes in the retinas of AD animal models 
have included tight junction attenuation, variations in vas-
cular branching and budding, and decreases in complexity, 
field area, and length of RGC dendrites (Table 3) [5, 6, 123, 
148, 184]. While synaptic density in the Tg2576 mouse 
has shown no change in either pre- or post-synaptic mark-
ers [184], synaptic loss and impairment, typically related 
to cognitive deficits when observed in the brain, have 
been reported in the ApoE4 mouse retina [5, 6]. Changes 
observed outside of ocular CNS tissues in rodent and fly 
eyes have included thinning of the choroid [178], as well 
as cellular swelling, organelle disorganization, and opacity 
in the lens [39, 56]. Furthermore, altered expression levels 
of various proteins and mRNA transcripts essential to nor-
mal cell function have been detected, including a report of 
increased ATP release in the retina of an APP/PS1 mouse 
model [151].

Intracellular malformations have also been documented 
in retinal cells, including increases in double nuclei and 
hypertrophy in the RPE, as well as cellular swelling, crista 
fragmentation, and complexity reduction in mitochon-
dria of Tg rodent models [152, 178, 184]. In addition, two 
studies investigating ocular changes in the ApoE4 mouse 
reported increased neovascularization following laser-
driven injury and decreased VEGF levels in the choroid 
[6, 123]. Overall, the above studies, predominantly those 
pertaining to genetic murine models of AD, indicate that 
the effects of Alzheimer’s known to afflict the brain, espe-
cially synaptic loss and neuronal degeneration, also mani-
fest in the retina.

In vivo imaging of AD in the eyes of patients 
and animal models

Visualization of the retina and its AD-related abnormali-
ties may be achieved with non-invasive optical imaging 
technologies and advanced electroretinogram techniques. 
Advanced OCT has been widely used in recent years to 
accurately image cross sections of the retina. This tech-
nique has provided evidence for significant thinning of the 
peripapillary NFL, macular volume loss, and nerve fiber 
density decrease in patients with mild to severe AD, sug-
gesting that thinning might occur early in disease progres-
sion [10, 14, 50, 62, 87, 91, 92, 100, 104, 113, 114, 121, 
135, 142, 145]. Used in conjunction with Fundus Auto-Flu-
orescence (FAF), a method for detection of highly fluores-
cent structures, areas of interest for OCT examination have 
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been suggested, thereby leading to a possible visualization 
of perimacular and perivascular Aβ deposits primarily in 
the OPL, GCL, and NFL of AD patients [100]. A modi-
fied HRA OCT system has been further employed to detect 
pTau in the GCL, OPL, IPL, and INL of a P301S mouse 
model [163].

Thus far, a consensus has not been met regarding the 
correlation between NFL thinning and degree of cogni-
tive impairment. One study that measured impairment by 
MMSE and Montreal Cognitive Assessment (MOCA) 
found a positive correlation [142], while two others spe-
cifically reported no correlation between NFL thinning 
and either MMSE score or AD status [62, 111]. Notably, 
a study investigating NFL thinning as a diagnostic tool 
reported successful prediction of AD status from NFL 
thickness data [114].

While ex  vivo staining has suggested that amyloid 
plaques can be detected in the eye, the first in vivo detec-
tion of Aβ deposits in a Tg model of AD  came in 2010, 
when Koronyo-Hamaoui et  al. reported high-resolution 
detection of curcumin-labeled Aβ plaques in the APPSWE/
PS1ΔE9 retina using an adapted optical imaging micro-
scope [107, 108]. Other improvements and modifications 
to established OCT techniques, including Fourier Domain 
OCT, Spectral Domain OCT, Functional OCT, and Doppler 
OCT, have allowed researchers to document degeneration 
in specific ocular tissues and cell types, as well as changes 
in blood flow and blood oxygen saturation in the retina [17, 
106, 110, 114, 124, 181].

Various imaging techniques have been used to study 
other aspects of degeneration in the AD eye. For exam-
ple, lens opacity measured by light scattering was not 
found to correlate significantly with AD disease progres-
sion [18]. Digital photography has been used to examine 
changes to retinal vasculature, including vascular narrow-
ing and attenuation, changes in tortuosity, increased width 
variation, and reduction of branching complexity [32, 
59]. Fluorescent Ligand Eye Scanning (FLES) is another 
approach to detect Aβ peptides in AD lenses in  vivo, 
which was used in another study to predict clinical diag-
noses in probable AD patients [101, 102]. An additional 
study examining changes in retinal blood oxygen satura-
tion used spectrophotometric non-invasive retinal oximetry 
to report the elevation of blood oxygen saturation, yield-
ing data similar to that of AMD in AD patient retinas [49]. 
Furthermore, scanning with laser ophthalmoscopy (SLO) 
has revealed a reduction in the number of fibers in the AD 
optic nerve [40]. Confocal SLO has also been used for 
in vivo monitoring of apoptotic RGC death in a 3xTg AD 
mouse model, which could be applied to future research 
on neurodegeneration in AD patients [35]. Dysfunction in 
RGCs and changes in the optic nerve were also detected 
by pERG in patients with AD [109, 146, 147].

Although many of these changes are common to other 
neurodegenerative diseases [120], the ability to monitor 
increasingly detailed changes in the AD eye can illuminate 
those processes specific to the disease, such as deposition 
of Aβ. More importantly, these studies suggest that retinal 
imaging technologies with high resolution and sensitivity 
could be adapted to detect AD-specific pathology, which 
could facilitate the early diagnosis and monitoring of dis-
ease progression.

Therapeutic response in the retina of murine AD 
models

Advances in imaging of retinal Aβ in  vivo facilitate the 
possibility of monitoring changes in amyloid burden in 
response to therapeutic intervention. Immunotherapies tar-
geting Aβ deposits and accumulation have been studied in a 
handful of rodent models.

The first examination of the effects of immunization ther-
apy on AD-related pathology in the rodent eye came from 
Liu et al. [117]. In this study, experimental groups of Tg2576 
mice were immunized subcutaneously with a number of 
Aβ-related molecules [i.e., islet amyloid polypeptide (IAPP), 
Aβ oligomer, or Aβ fibril], and various parameters were 
measured. Instances of retinal plaque formation and result-
ing plaque density observed by immunohistochemistry were 
shown to decrease, though these results reached statistical 
significance solely in the Aβ oligomer- and IAPP-immunized 
groups. Amyloid angiopathy score increased significantly 
in all groups. Interestingly, retinal thinning was attenuated, 
but microglial infiltration and astrogliosis increased in the 
immunized groups compared with controls [117].

Among the considerations involved in developing new 
therapies for neurodegeneration is the possibility of repur-
posing existing or even FDA-approved drugs to combat dif-
ferent pathologies. In 2012, Koronyo et al. published find-
ings from a study using the sub-cutaneous immunization of 
glatiramer acetate (GA), a drug approved for the treatment 
of relapsing-remitting multiple sclerosis [108, 164]. Their 
previous study also involved a modified myelin oligoden-
drocyte glycoprotein-derived peptide (MOG45D) loaded on 
dendritic cells (DC-45D) in the retinas of APPSWE/PS1ΔE9 
mice [107]. In the latter study, the authors measured and 
described the ex  vivo quantitative reduction of amyloid 
plaque burden in the brain matching that observed in the ret-
ina [107]. In the subsequent study, in vivo imaging of mouse 
retinas following GA immunization displayed a reduction 
in Aβ plaque number after 1 month, and further reduction, 
as well as a dynamic pattern of plaque formation and clear-
ance, after 2  months [108]. Next, Yang et  al. investigated 
the effects of bone marrow transplantation (BMT) on APP-

SWE/PS1ΔE9 mice, and reported a significant reduction in 
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numbers of both retinal and cerebral Aβ deposits in BMT-
treated Tg mice. The study also reported that the total num-
ber of retinal microglia, possibly involved in phagocytosis 
of Aβ plaques, was normalized to non-disease levels com-
parable to those seen in WT mouse retinas. GCL neuronal 
loss, inner retinal thinning, and other signs of age-related 
degeneration were mitigated in BMT-treated mice [187].

More recent investigations have yielded other promising 
results. He et al. [78] reported that treatment with Ginseno-
side Rg1 significantly decreased NFT formation in the RPE 
cells of APPSWE/PS1M146L mice compared with untreated Tg 
controls. Parthasarathy et  al. [150] investigated the effects 
of intra-vitreally delivered sNEP (a recombinant form 
of the neprylisin catalytic domain) in the eyes of 5xFAD 
mice. The study reported a decrease in Aβ levels in sNEP-
treated eyes compared with untreated Tg controls [150]. 
Retinal Aβ40 appeared to have been more strongly affected, 
as a significant reduction of Aβ40 was observed 2 h follow-
ing treatment, while the reduction of Aβ42 reached statisti-
cal significance only after 3 days. Although ERG response 
improved with sNEP treatment, this finding was not statis-
tically significant [150]. Recently, Gao et al. [61] reported 
that memantine (MEM), an uncompetitive antagonist of the 
N-methyl-d-aspartate receptor, markedly increased RGC 
count (by NeuN-IR staining) and significantly decreased 
the number of apoptotic RGCs in retinas of MEM-treated 
Tg mice when compared with untreated Tg controls. Mül-
ler cell adapted response appeared to be inhibited in MEM-
treated mice, and inner limiting membrane (ILM) thick-
ening was mitigated compared to that of the untreated Tg 
controls. In addition, visual function showed improvement 
in MEM-treated mice, as the pERG P50 component showed 
a significant increase in amplitude and the pERG P2 compo-
nent delay was significantly attenuated compared with defi-
cits observed in untreated Tg controls [61].

Although these animal model studies involve diverse 
methodology, they collectively suggest that the retina is a 
tissue that may faithfully mirror brain pathology. Further-
more, the availability of the retina as a site for clinical mon-
itoring of disease progression in response to therapeutic 
intervention also alludes to the possibility of potential ther-
apeutic intervention via the retina. In the current absence of 
effective therapy for AD, the retina may yet prove useful as 
a site of retrograde drug administration, by exploiting the 
molecular delivery systems of the optic nerve.

Conclusions

Over the past decade, our understanding of AD has grown 
far beyond its established definitive signs, cerebral Aβ 

plaques and NFTs. In this highly dynamic field, novel 
disease biomarkers are continually revealed. Amyloid-
related findings include phosphorylated or conformation-
ally diverse forms of Aβ, prone to extra- and intracellular 
aggregation. Other key molecular findings include assem-
blies of pTau, which are typically intracellular, but can 
also  be observed in extracellular space, and may exhibit 
self-propagating properties. Many of these hallmarks, 
along with neuroinflammation and related abnormalities, 
have been observed in the retinas of AD patients and ani-
mal models.

Owing to the embryological ties of the neuroretina 
and brain structures affected by AD, it is no surprise that 
research has yielded increasing indications of degenera-
tion in the AD retina as well. Recent evidence of early Aβ 
aggregation and amyloid-related neuronal degeneration in 
retinal tissues has mirrored that reported in human AD and 
Tg animal model brains. This not only supports the status 
of the retina as a target of presymptomatic AD imaging, but 
also suggests that Alzheimer’s simultaneously affects both 
the brain and the retina.

Advances in retinal imaging and evidence of a posi-
tive response to therapy in the eyes of AD animal models 
hold promise for widespread population screening, early 
diagnosis and monitoring, and ultimately developing 
disease-modifying intervention. Although we learn much 
from observing AD in the brain, a key goal is to screen 
for the earliest signs and progression of the disease, and 
to intervene before it manifests as irreversible clinical 
symptoms. Therefore, one can no longer ignore the pos-
sibility that the retina—a CNS tissue uniquely accessible 
for direct, high resolution, non-invasive imaging—pro-
vides invaluable access to study and monitor Alzheimer’s 
disease.
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