306 research outputs found

    Biocoal - Quality control and assurance

    Get PDF
    Torrefied biomass is said to have potential as a replacement for coal. One of the main goals of torrefaction is to make biomass resemble coal more in terms of its properties as a solid fuel. As a fuel, a novel fuel that is produced by thermal treatment of raw biomass, biocoal has to comply with the regulations of solid fuels from different regulatory bodies. The production regime is different in comparison to the thermally treated fuel already established on the market, such as charcoal. This might raise an issue with the bodies controlling the circulation of chemical substances in the market, such as ECHA in Europe. The aim of this paper is to recommend suitable analytical techniques in order to enable effective quality control. This is necessary if biomass of low and highly variable quality is supposed to become more uniform and turn into a commodity. Information given in many published studies seems sufficient to use of FTIR and NIR as quality control techniques. The use of NMR can be complementary but is limited due to the high cost of the analytical equipment and time-consuming sample preparation. Rapid testing techniques, such as FTIR ATR or NIR, might prove feasible for quality control of solid biofuels, such as biocoal, especially for in-house quality control purposes. This way proper quality assurance and compliance with various novel regulations, such as REACH, could be assured. Further research could be helpful, especially if results would be available in publicly available databases, such as Phyllis

    Gastrointestinal stromal tumour and hypoglycemia in a Fjord pony: Case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neoplasia may cause hypoglycemia in different species including the horse, but hypoglycemia has not previously been reported in the horse associated with gastrointestinal stromal tumours.</p> <p>Case presentation</p> <p>A case of a gastrointestinal stromal tumour in a Fjord pony with severe recurrent hypoglycemia is presented. The mechanism causing the hypoglycemia was not established.</p> <p>Conclusion</p> <p>This case indicates that a gastrointestinal stromal tumour may cause hypoglycemia also in the horse.</p

    Genomic Analysis of Mouse Retinal Development

    Get PDF
    The vertebrate retina is comprised of seven major cell types that are generated in overlapping but well-defined intervals. To identify genes that might regulate retinal development, gene expression in the developing retina was profiled at multiple time points using serial analysis of gene expression (SAGE). The expression patterns of 1,051 genes that showed developmentally dynamic expression by SAGE were investigated using in situ hybridization. A molecular atlas of gene expression in the developing and mature retina was thereby constructed, along with a taxonomic classification of developmental gene expression patterns. Genes were identified that label both temporal and spatial subsets of mitotic progenitor cells. For each developing and mature major retinal cell type, genes selectively expressed in that cell type were identified. The gene expression profiles of retinal Müller glia and mitotic progenitor cells were found to be highly similar, suggesting that Müller glia might serve to produce multiple retinal cell types under the right conditions. In addition, multiple transcripts that were evolutionarily conserved that did not appear to encode open reading frames of more than 100 amino acids in length (“noncoding RNAs”) were found to be dynamically and specifically expressed in developing and mature retinal cell types. Finally, many photoreceptor-enriched genes that mapped to chromosomal intervals containing retinal disease genes were identified. These data serve as a starting point for functional investigations of the roles of these genes in retinal development and physiology

    Comprehensive in silico functional specification of mouse retina transcripts

    Get PDF
    BACKGROUND: The retina is a well-defined portion of the central nervous system (CNS) that has been used as a model for CNS development and function studies. The full specification of transcripts in an individual tissue or cell type, like retina, can greatly aid the understanding of the control of cell differentiation and cell function. In this study, we have integrated computational bioinformatics and microarray experimental approaches to classify the tissue specificity and developmental distribution of mouse retina transcripts. RESULTS: We have classified a set of retina-specific genes using sequence-based screening integrated with computational and retina tissue-specific microarray approaches. 33,737 non-redundant sequences were identified as retina transcript clusters (RTCs) from more than 81,000 mouse retina ESTs. We estimate that about 19,000 to 20,000 genes might express in mouse retina from embryonic to adult stages. 39.1% of the RTCs are not covered by 60,770 RIKEN full-length cDNAs. Through comparison with 2 million mouse ESTs, spectra of neural, retinal, late-generated retinal, and photoreceptor -enriched RTCs have been generated. More than 70% of these RTCs have data from biological experiments confirming their tissue-specific expression pattern. The highest-grade retina-enriched pool covered almost all the known genes encoding proteins involved in photo-transduction. CONCLUSION: This study provides a comprehensive mouse retina transcript profile for further gene discovery in retina and suggests that tissue-specific transcripts contribute substantially to the whole transcriptome

    Temporal Accumulation and Decision Processes in the Duration Bisection Task Revealed by Contingent Negative Variation

    Get PDF
    The duration bisection paradigm is a classic task used to examine how humans and other animals perceive time. Typically, participants first learn short and long anchor durations and are subsequently asked to classify probe durations as closer to the short or long anchor duration. However, the specific representations of time and the decision rules applied in this task remain the subject of debate. For example, researchers have questioned whether participants actually use representations of the short and long anchor durations in the decision process rather than merely a response threshold that is derived from those anchor durations. Electroencephalographic (EEG) measures, like the contingent negative variation (CNV), can provide information about the perceptual and cognitive processes that occur between the onset of the timing stimulus and the motor response. The CNV has been implicated as an electrophysiological marker of interval timing processes such as temporal accumulation, representation of the target duration, and the decision that the target duration has been attained. We used the CNV to investigate which durations are involved in the bisection categorization decision. The CNV increased in amplitude up to the value of the short anchor, remained at a constant level until about the geometric mean (GM) of the short and long anchors, and then began to resolve. These results suggest that the short anchor and the GM of the short and long anchors are critical target durations used in the bisection categorization decision process. In addition, larger mean N1P2 amplitude differences were associated with larger amplitude CNVs, which may reflect the participant’s precision in initiating timing on each trial across a test session. Overall, the results demonstrate the value of using scalp-recorded EEG to address basic questions about interval timing
    corecore