72 research outputs found

    Luminescent properties of Bi-doped polycrystalline KAlCl4

    Full text link
    We observed an intensive near-infrared luminescence in Bi-doped KAlCl4 polycrystalline material. Luminescence dependence on the excitation wavelength and temperature of the sample was studied. Our experimental results allow asserting that the luminescence peaked near 1 um belongs solely to Bi+ ion which isomorphically substitutes potassium in the crystal. It was also demonstrated that Bi+ luminescence features strongly depend on the local ion surroundings

    Predicted Functions of MdmX in Fine-Tuning the Response of p53 to DNA Damage

    Get PDF
    Tumor suppressor protein p53 is regulated by two structurally homologous proteins, Mdm2 and MdmX. In contrast to Mdm2, MdmX lacks ubiquitin ligase activity. Although the essential interactions of MdmX are known, it is not clear how they function to regulate p53. The regulation of tumor suppressor p53 by Mdm2 and MdmX in response to DNA damage was investigated by mathematical modeling of a simplified network. The simplified network model was derived from a detailed molecular interaction map (MIM) that exhibited four coherent DNA damage response pathways. The results suggest that MdmX may amplify or stabilize DNA damage-induced p53 responses via non-enzymatic interactions. Transient effects of MdmX are mediated by reservoirs of p53∶MdmX and Mdm2∶MdmX heterodimers, with MdmX buffering the concentrations of p53 and/or Mdm2. A survey of kinetic parameter space disclosed regions of switch-like behavior stemming from such reservoir-based transients. During an early response to DNA damage, MdmX positively or negatively regulated p53 activity, depending on the level of Mdm2; this led to amplification of p53 activity and switch-like response. During a late response to DNA damage, MdmX could dampen oscillations of p53 activity. A possible role of MdmX may be to dampen such oscillations that otherwise could produce erratic cell behavior. Our study suggests how MdmX may participate in the response of p53 to DNA damage either by increasing dependency of p53 on Mdm2 or by dampening oscillations of p53 activity and presents a model for experimental investigation

    Biomaterial-Based Implantable Devices for Cancer Therapy

    Get PDF
    This review article focuses on the current local therapies mediated by implanted macroscaled biomaterials available or proposed for fighting cancer and also highlights the upcoming research in this field. Several authoritative review articles have collected and discussed the state-of-the-art as well as the advancements in using biomaterial-based micro- and nano-particle systems for drug delivery in cancer therapy. On the other hand, implantable biomaterial devices are emerging as highly versatile therapeutic platforms, which deserve an increased attention by the healthcare scientific community, as they are able to offer innovative, more effective and creative strategies against tumors. This review summarizes the current approaches which exploit biomaterial-based devices as implantable tools for locally administrating drugs and describes their specific medical applications, which mainly target resected brain tumors or brain metastases for the inaccessibility of conventional chemotherapies. Moreover, a special focus in this review is given to innovative approaches, such as combined delivery therapies, as well as to alternative approaches, such as scaffolds for gene therapy, cancer immunotherapy and metastatic cell capture, the later as promising future trends in implantable biomaterials for cancer applications

    Glioma imaging in Europe: A survey of 220 centres and recommendations for best clinical practice

    Get PDF
    Objectives: At a European Society of Neuroradiology (ESNR) Annual Meeting 2015 workshop, commonalities in practice, current controversies and technical hurdles in glioma MRI were discussed. We aimed to formulate guidance on MRI of glioma and determine its feasibility, by seeking information on glioma imaging practices from the European Neuroradiology community. Methods: Invitations to a structured survey were emailed to ESNR members (n=1,662) and associates (n=6,400), European national radiologists’ societies and distributed via social media. Results: Responses were received from 220 institutions (59% academic). Conventional imaging protocols generally include T2w, T2-FLAIR, DWI, and pre- and post-contrast T1w. Perfusion MRI is used widely (85.5%), while spectroscopy seems reserved for specific indications. Reasons for omitting advanced imaging modalities include lack of facility/software, time constraints and no requests. Early postoperative MRI is routinely carried out by 74% within 24–72 h, but only 17% report a percent measure of resection. For follow-up, most sites (60%) issue qualitative reports, while 27% report an assessment according to the RANO criteria. A minori

    Counseling patients about sexual health when considering post-prostatectomy radiation treatment

    Get PDF
    Prostate cancer is the second most frequently diagnosed cancer in men in the United States. Many men with clinically localized prostate cancer survive for 15 years or more. Although early detection and successful definitive treatments are increasingly common, a debate regarding how aggressively to treat prostate cancer is ongoing because of the effect of aggressive treatment on the quality of life, including sexual functioning. We examined current research on the effect of post-prostatectomy radiation treatment on sexual functioning, and suggest a way in which patient desired outcomes might be taken into consideration while making decisions with regard to the timing of radiation therapy after prostatectomy
    • …
    corecore