1,481 research outputs found

    Aromatherapy: Using essential oils to decrease nausea and vomiting in patients in the acute care setting

    Get PDF
    https://digitalcommons.psjhealth.org/stvincent-bootcamp/1017/thumbnail.jp

    Train Your Own GNN Teacher: Graph-Aware Distillation on Textual Graphs

    Full text link
    How can we learn effective node representations on textual graphs? Graph Neural Networks (GNNs) that use Language Models (LMs) to encode textual information of graphs achieve state-of-the-art performance in many node classification tasks. Yet, combining GNNs with LMs has not been widely explored for practical deployments due to its scalability issues. In this work, we tackle this challenge by developing a Graph-Aware Distillation framework (GRAD) to encode graph structures into an LM for graph-free, fast inference. Different from conventional knowledge distillation, GRAD jointly optimizes a GNN teacher and a graph-free student over the graph's nodes via a shared LM. This encourages the graph-free student to exploit graph information encoded by the GNN teacher while at the same time, enables the GNN teacher to better leverage textual information from unlabeled nodes. As a result, the teacher and the student models learn from each other to improve their overall performance. Experiments in eight node classification benchmarks in both transductive and inductive settings showcase GRAD's superiority over existing distillation approaches for textual graphs

    A methodology for speeding up matrix vector multiplication for single/multi-core architectures

    Get PDF
    In this paper, a new methodology for computing the Dense Matrix Vector Multiplication, for both embedded (processors without SIMD unit) and general purpose processors (single and multi-core processors, with SIMD unit), is presented. This methodology achieves higher execution speed than ATLAS state-of-the-art library (speedup from 1.2 up to 1.45). This is achieved by fully exploiting the combination of the software (e.g., data reuse) and hardware parameters (e.g., data cache associativity) which are considered simultaneously as one problem and not separately, giving a smaller search space and high-quality solutions. The proposed methodology produces a different schedule for different values of the (i) number of the levels of data cache; (ii) data cache sizes; (iii) data cache associativities; (iv) data cache and main memory latencies; (v) data array layout of the matrix and (vi) number of cores

    A comparison of three load-velocity based methods to estimate maximum overhead press performance in weightlifters

    Get PDF
    This study aimed to evaluate whether lifting velocity can be used to estimate the overhead press one repetition maximum (1RM) and to explore the differences in the accuracy of the 1RM between three velocity-based methods. Twenty-seven weightlifters (16 men and 11 women) participated. The first session was used to test the overhead press 1RM. The second session consisted of an incremental loading test during the overhead press. The mean velocity was registered using a transducer attached to the barbell. A 1-way repeated-measures analysis of variance (ANOVA) with Bonferroni post hoc corrections was applied to the absolute differences between the actual and predicted 1RMs. Raw differences with 95% limits of agreement and ordinary least-products regressions were used to test the concurrent validity of the 1RM prediction methods with respect to the actual 1RM. The ANOVA did not reveal significant differences for the absolute differences respect to the actual 1RM between the three 1RM prediction methods ( F = 3.2, p = .073). The absolute errors were moderate for the Multiple-Point (6.1 ± 3.7%), Two-Point45−75 (8.6 ± 6.2%), and Two-Point45−90 methods (5.7 ± 4.0%). The validity analysis showed that all the 1RM prediction methods underestimated the actual 1RM (1.0–2.2 kg), but ordinary least-products regressions failed to show fixed or proportional bias. These results suggest that the Multiple-Point and Two-Point45−90 velocity-based methods might be viable tools to predict the overhead press 1RM in weightlifters, but practitioners are encouraged to use the direct 1RM for a more accurate prescription of the training loads

    Structure-based identification of functional residues in the nucleoside-2'-O-methylase domain of Bluetongue virus VP4 capping enzyme.

    Get PDF
    Bluetongue virus (BTV) encodes a single capping protein, VP4, which catalyzes all reactions required to generate cap1 structures on nascent viral transcripts. Further, structural analysis by X-ray crystallography indicated each catalytic reaction is arranged as a discrete domain, including a nucleoside-2'-O-methyltransferase (2'-O MTase). In this study, we have exploited the structural information to identify the residues that are important for the catalytic activity of 2'-O MTase of VP4 and their influence on BTV replication. The effect of these mutations on GMP binding, guanylyltransferase (GTase) and methylase activities were analysed by a series of in vitro biochemical assays using recombinant mutant proteins; subsequently their effects on virus replication were assessed by introducing the same mutations in replicating viral genome using a reverse genetics system. Our data showed that single substitution mutations in the catalytic tetrad K-D-K-E were sufficient to abolish 2'-O MTase activity in vitro and to completely abrogate BTV replication in cells; although these mutants retained the upstream GMP binding, GTase and guanine-N7-methyltransferase activities. Mutations of the surrounding substrate-binding pocket (predicted to recruit cap0) had variable effects on in vitro VP4 capping activity. Only triple but not single substitution mutations of these residues in genome resulted in reduced virus replication kinetics. This is the first report investigating the importance of 2'-O MTase function for any member of the Reoviridae and highlights the significance of K-D-K-E tetrad and surrounding residues for the efficiency of 2'-O MTase activity and in turn, for virus fitness

    The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement

    Get PDF
    Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis

    Hazard Assessment of Abraded Thermoplastic Composites Reinforced with Reduced Graphene Oxide

    Get PDF
    Graphene-related materials (GRMs) are subject to intensive investigations and considerable progress has been made in recent years in terms of safety assessment. However, limited information is available concerning the hazard potential of GRM-containing products such as graphene-reinforced composites. In the present study, we conducted a comprehensive investigation of the potential biological effects of particles released through an abrasion process from reduced graphene oxide (rGO)-reinforced composites of polyamide 6 (PA6), a widely used engineered thermoplastic polymer, in comparison to as-produced rGO. First, a panel of well-established in vitro models, representative of the immune system and possible target organs such as the lungs, the gut, and the skin, was applied. Limited responses to PA6-rGO exposure were found in the different in vitro models. Only as-produced rGO induced substantial adverse effects, in particular in macrophages. Since inhalation of airborne materials is a key occupational concern, we then sought to test whether the in vitro responses noted for these materials would translate into adverse effects in vivo. To this end, the response at 1, 7 and 28 days after a single pulmonary exposure was evaluated in mice. In agreement with the in vitro data, PA6-rGO induced a modest and transient pulmonary inflammation, resolved by day 28. In contrast, rGO induced a longer-lasting, albeit moderate inflammation that did not lead to tissue remodeling within 28 days. Taken together, the present study suggests a negligible impact on human health under acute exposure conditions of GRM fillers such as rGO when released from composites at doses expected at the workplace
    • …
    corecore