16 research outputs found

    Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration

    Get PDF
    The aim of this study was the preparation and characterization of bioactive glass-ceramic scaffolds for bone tissue engineering. For this purpose, a glass belonging to the system SiO2-P2O5-CaO-MgO-Na2O-K2O (CEL2) was used. The sponge-replication method was adopted to prepare the scaffolds; specifically, a polymeric skeleton was impregnated with a slurry containing CEL2 powder, polyvinyl alcohol (PVA) as a binding agent and distilled water. The impregnated sponge was then thermally treated to remove the polymeric phase and to sinter the inorganic one. The obtained scaffolds possessed an open and interconnected porosity, analogous to cancellous bone texture, and with a mechanical strength above 2 MPa. Moreover, the scaffolds underwent partial bioresorption due to ion-leaching phe- nomena. This feature was investigated by X-ray computed microcomputed tomography (micro-CT). Micro-CT is a three-dimensional (3- D) radiographic imaging technique, able to achieve a spatial resolution close to 1 lm3. The use of synchrotron radiation allows the selected photon energy to be tuned to optimize the contrast among the different phases in the investigated samples. The 3-D scaffolds were soaked in a simulated body fluid (SBF) to study the formation of hydroxyapatite microcrystals on the scaffold struts and on the internal pore walls. The 3-D scaffolds were also soaked in a buffer solution (Tris-HCl) for different times to assess the scaffold bioresorp- tion according to the ISO standard. A gradual resorption of the pores walls was observed during the soakings both in SBF and in Tris- HC

    Polymers as Biomaterials for Tissue Engineering and Controlled Drug Delivery

    No full text

    Presence of retinal pericyte-reactive autoantibodies in diabetic retinopathy patients

    No full text
    The loss of retinal pericytes (RPCs) is a hallmark of early stage diabetic retinopathy (DR), but the mechanism underlying RPC death is unclear. Although it was postulated in previous studies using bovine RPCs that autoantibodies against RPCs might develop and induce RPC death, it is unknown whether autoantibodies against cell-surface antigens on human RPCs exist in DR patients, whether such autoantibodies contribute to RPC damage/loss, and if they do, through which mechanism. We screened serum samples from DR patients and controls using primary human RPCs and found that that levels of IgGs reactive to RPCs were significantly higher in the DR group than the control group. Serum samples with higher RPC-reactive IgG levels induced more severe complement-mediated RPC damage than those with lower RPC-reactive IgG levels. We also assessed levels of the complement-activation products C3a, C4a and C5a in these serum samples, and found that serum levels of C3a and C5a, but not C4a, were higher in the DR group than control group. These data provide evidence the first time showing that autoantibodies against RPCs can develop in DR patients, and that these autoantibodies could contribute to pericyte damage through complement activation
    corecore