149 research outputs found

    Gauging U(1) symmetries and the number of right-handed neutrinos

    Full text link
    In this letter we consider that assuming: a) that the only left-handed neutral fermions are the active neutrinos, b) that B−LB-L is a gauge symmetry, and c) that the LL assignment is restricted to the integer numbers, the anomaly cancellation imply that at least three right-handed neutrinos must be added to the minimal representation content of the electroweak standard model. However, two types of models arise: i) the usual one where each of the three identical right-handed neutrinos has total lepton number L=1; ii) and the other one in which two of them carry L=4 while the third one carries L=−5L=-5.Comment: Published version in PLB forma

    Steam reforming of different biomass tar model compounds over Ni/Al2O3 catalysts

    Get PDF
    This work focuses on the removal of the tar derived from biomass gasification by catalytic steam reforming on Ni/Al2O3 catalysts. Different tar model compounds (phenol, toluene, methyl naphthalene, indene, anisole and furfural) were individually steam reformed (after dissolving each one in methanol), as well as a mixture of all of them, at 700 °C under a steam/carbon (S/C) ratio of 3 and 60 min on stream. The highest conversions and H2 potential were attained for anisole and furfural, while methyl naphthalene presented the lowest reactivity. Nevertheless, the higher reactivity of oxygenates compared to aromatic hydrocarbons promoted carbon deposition on the catalyst (in the 1.5–2.8 wt.% range). When the concentration of methanol is decreased in the feedstock and that of toluene or anisole is increased, the selectivity to CO is favoured in the gaseous products, thus increasing coke deposition on the catalyst and decreasing catalyst activity for the steam reforming reaction. Moreover, an increase in Ni loading in the catalyst from 5 to 20% enhances carbon conversion and H2 formation in the steam reforming of a mixture of all the model compounds studied, but these values decrease for a Ni content of 40%. Coke formation also increased by increasing Ni loading, attaining its maximum value for 40% Ni (6.5 wt.%)

    Ferric carboxymaltose with or without erythropoietin for the prevention of red-cell transfusions in the perioperative period of osteoporotic hip fractures: a randomized contolled trial. The PAHFRAC-01 project

    Get PDF
    Background: Around one third to one half of patients with hip fractures require red-cell pack transfusion. The increasing incidence of hip fracture has also raised the need for this scarce resource. Additionally, red-cell pack transfusions are not without complications which may involve excessive morbidity and mortality. This makes it necessary to develop blood-saving strategies. Our objective was to assess safety, efficacy, and cost-effictveness of combined treatment of i.v. ferric carboxymaltose and erythropoietin (EPOFE arm) versus i.v. ferric carboxymaltose (FE arm) versus a placebo (PLACEBO arm) in reducing the percentage of patients who receive blood transfusions, as well as mortality in the perioperative period of hip fracture intervention. Methods/Design: Multicentric, phase III, randomized, controlled, double blinded, parallel groups clinical trial. Patients > 65 years admitted to hospital with a hip fracture will be eligible to participate. Patients will be treated with either a single dosage of i.v. ferric carboxymaltose of 1 g and subcutaneous erythropoietin (40.000 IU), or i.v. ferric carboxymaltose and subcutaneous placebo, or i.v. placebo and subcutaneous placebo. Follow-up will be performed until 60 days after discharge, assessing transfusion needs, morbidity, mortality, safety, costs, and health-related quality of life. Intention to treat, as well as per protocol, and incremental cost-effectiveness analysis will be performed. The number of recruited patients per arm is set at 102, a total of 306 patients. Discussion: We think that this trial will contribute to the knowledge about the safety and efficacy of ferric carboxymaltose with/without erythropoietin in preventing red-cell pack transfusions in patients with hip fracture. ClinicalTrials.gov identifier: NCT01154491

    Dual Mechanism for the Translation of Subgenomic mRNA from Sindbis Virus in Infected and Uninfected Cells

    Get PDF
    Infection of BHK cells by Sindbis virus (SV) gives rise to a profound inhibition of cellular protein synthesis, whereas translation of viral subgenomic mRNA that encodes viral structural proteins, continues for hours. To gain further knowledge on the mechanism by which this subgenomic mRNA is translated, the requirements for some initiation factors (eIFs) and for the presence of the initiator AUG were examined both in infected and in uninfected cells. To this end, BHK cells were transfected with different SV replicons or with in vitro made SV subgenomic mRNAs after inactivation of some eIFs. Specifically, eIF4G was cleaved by expression of the poliovirus 2A protease (2Apro) and the alpha subunit of eIF2 was inactivated by phosphorylation induced by arsenite treatment. Moreover, cellular location of these and other translation components was analyzed in BHK infected cells by confocal microscopy. Cleavage of eIF4G by poliovirus 2Apro does not hamper translation of subgenomic mRNA in SV infected cells, but bisection of this factor blocks subgenomic mRNA translation in uninfected cells or in cell-free systems. SV infection induces phosphorylation of eIF2α, a process that is increased by arsenite treatment. Under these conditions, translation of subgenomic mRNA occurs to almost the same extent as controls in the infected cells but is drastically inhibited in uninfected cells. Notably, the correct initiation site on the subgenomic mRNA is still partially recognized when the initiation codon AUG is modified to other codons only in infected cells. Finally, immunolocalization of different eIFs reveals that eIF2 α and eIF4G are excluded from the foci, where viral RNA replication occurs, while eIF3, eEF2 and ribosomes concentrate in these regions. These findings support the notion that canonical initiation takes place when the subgenomic mRNA is translated out of the infection context, while initiation can occur without some eIFs and even at non-AUG codons in infected cells

    Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Get PDF
    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures

    Pulsations in main sequence OBAF-type stars

    Get PDF
    CONTEXT: The third Gaia data release provides photometric time series covering 34 months for about 10 million stars. For many of those stars, a characterisation in Fourier space and their variability classification are also provided. This paper focuses on intermediate- to high-mass (IHM) main sequence pulsators (M ≄  1.3 M⊙) of spectral types O, B, A, or F, known as ÎČ Cep, slowly pulsating B (SPB), ÎŽ Sct, and Îł Dor stars. These stars are often multi-periodic and display low amplitudes, making them challenging targets to analyse with sparse time series. AIMS: We investigate the extent to which the sparse Gaia DR3 data can be used to detect OBAF-type pulsators and discriminate them from other types of variables. We aim to probe the empirical instability strips and compare them with theoretical predictions. The most populated variability class is that of the ÎŽ Sct variables. For these stars, we aim to confirm their empirical period-luminosity (PL) relation, and verify the relation between their oscillation amplitude and rotation. METHODS: All datasets used in this analysis are part of the Gaia DR3 data release. The photometric time series were used to perform a Fourier analysis, while the global astrophysical parameters necessary for the empirical instability strips were taken from the Gaia DR3 gspphot tables, and the v sin i data were taken from the Gaia DR3 esphs tables. The ή Sct PL relation was derived using the same photometric parallax method as the one recently used to establish the PL relation for classical Cepheids using Gaia data. RESULTS: We show that for nearby OBAF-type pulsators, the Gaia DR3 data are precise and accurate enough to pinpoint them in the Hertzsprung-Russell (HR) diagram. We find empirical instability strips covering broader regions than theoretically predicted. In particular, our study reveals the presence of fast rotating gravity-mode pulsators outside the strips, as well as the co-existence of rotationally modulated variables inside the strips as reported before in the literature. We derive an extensive period–luminosity relation for ÎŽ Sct stars and provide evidence that the relation features different regimes depending on the oscillation period. We demonstrate how stellar rotation attenuates the amplitude of the dominant oscillation mode of ÎŽ Sct stars. CONCLUSIONS: The Gaia DR3 time-series photometry already allows for the detection of the dominant (non-)radial oscillation mode in about 100 000 intermediate- and high-mass dwarfs across the entire sky. This detection capability will increase as the time series becomes longer, allowing the additional delivery of frequencies and amplitudes of secondary pulsation modes

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    BACKGROUND: Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. METHODS: We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). FINDINGS: Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4-61·9) in 1980 to 71·8 years (71·5-72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7-17·4), to 62·6 years (56·5-70·2). Total deaths increased by 4·1% (2·6-5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8-18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6-16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9-14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1-44·6), malaria (43·1%, 34·7-51·8), neonatal preterm birth complications (29·8%, 24·8-34·9), and maternal disorders (29·1%, 19·3-37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years o
    • 

    corecore