911 research outputs found
Magnetic Reversal on Vicinal Surfaces
We present a theoretical study of in-plane magnetization reversal for vicinal
ultrathin films using a one-dimensional micromagnetic model with
nearest-neighbor exchange, four-fold anisotropy at all sites, and two-fold
anisotropy at step edges. A detailed "phase diagram" is presented that catalogs
the possible shapes of hysteresis loops and reversal mechanisms as a function
of step anisotropy strength and vicinal terrace length. The steps generically
nucleate magnetization reversal and pin the motion of domain walls. No sharp
transition separates the cases of reversal by coherent rotation and reversal by
depinning of a ninety degree domain wall from the steps. Comparison to
experiment is made when appropriate.Comment: 12 pages, 8 figure
Language Learning, Recasts, and Interaction Involving AAC: Background and Potential for Intervention
For children with typical development, language is learned through everyday discursive interaction. Adults mediate child participation in such interactions through the deployment of a range of co-constructive strategies, including repeating, questioning, prompting, expanding, and reformulating the childâs utterances. Adult reformulations of child utterances, also known as recasts, have also been shown to relate to the acquisition of linguistic structures in children with language and learning disabilities and children and adults learning a foreign language. In this paper we discuss the theoretical basis and empirical evidence for the use of different types of recasts as a major language learning catalyst, and what may account for their facilitative effects. We consider the occurrence of different types of recasts in AAC-mediated interactions and their potential for language facilitation, within the typical operational and linguistic constraints of such interactions. We also consider the benefit of explicit and corrective forms of recasts for language facilitation in conversations with children who rely on AAC. We conclude by outlining future research directions
Language learning, recasts, and interaction involving AAC: background and potential for intervention
Recommended from our members
A Mendelian randomization study of the effect of type-2 diabetes on coronary heart disease
In observational studies, type-2 diabetes (T2D) is associated with an increased risk of coronary heart disease (CHD), yet interventional trials have shown no clear effect of glucose-lowering on CHD. Confounding may have therefore influenced these observational estimates. Here we use Mendelian randomization to obtain unconfounded estimates of the influence of T2D and fasting glucose (FG) on CHD risk. Using multiple genetic variants associated with T2D and FG, we find that risk of T2D increases CHD risk (odds ratio (OR)=1.11 (1.05â1.17), per unit increase in odds of T2D, P=8.8 Ă 10â5; using data from 34,840/114,981 T2D cases/controls and 63,746/130,681 CHD cases/controls). FG in non-diabetic individuals tends to increase CHD risk (OR=1.15 (1.00â1.32), per mmol·per l, P=0.05; 133,010 non-diabetic individuals and 63,746/130,681 CHD cases/controls). These findings provide evidence supporting a causal relationship between T2D and CHD and suggest that long-term trials may be required to discern the effects of T2D therapies on CHD risk
A globally relevant change taxonomy and evidence-based change framework for land monitoring
A globally relevant and standardized taxonomy and framework for consistently describing land cover change based on evidence is presented, which makes use of structured land cover taxonomies and is underpinned by the Driver-Pressure-StateïżœImpact-Response (DPSIR) framework. The Global Change Taxonomy currently lists 246 classes based on the notation âimpact (pressure)â, with this encompassing the consequence of observed change and associated reason(s), and uses scale-independent terms that factor in time. Evidence for different impacts is gathered through temporal comparison (e.g., days, decades apart) of land cover classes constructed and described from Environmental Descriptors (EDs; state indicators) with pre-defined measurement units (e.g., m, %) or categories (e.g., species type). Evidence for pressures, whether abiotic, biotic or human-influenced, is similarly accumulated, but EDs often differ from those used to determine impacts. Each impact and pressure term
is defined separately, allowing flexible combination into âimpact (pressure)â categories, and all are listed in an openly accessible glossary to ensure consistent use and
common understanding. The taxonomy and framework are globally relevant and can reference EDs quantified on the ground, retrieved/classified remotely (from groundbased, airborne or spaceborne sensors) or predicted through modelling. By providing capacity to more consistently describe change processesâincluding land degradation,
desertification and ecosystem restorationâthe overall framework addresses a wide and diverse range of local to international needs including those relevant to policy,
socioeconomics and land management. Actions in response to impacts and pressures and monitoring towards targets are also supported to assist future planning, including
impact mitigation actions
A globally relevant change taxonomy and evidence-based change framework for land monitoring
A globally relevant and standardized taxonomy and framework for consistently describing land cover change based on evidence is presented, which makes use of structured land cover taxonomies and is underpinned by the Driver-Pressure-State-Impact-Response (DPSIR) framework. The Global Change Taxonomy currently lists 246 classes based on the notation 'impact (pressure)', with this encompassing the consequence of observed change and associated reason(s), and uses scale-independent terms that factor in time. Evidence for different impacts is gathered through temporal comparison (e.g., days, decades apart) of land cover classes constructed and described from Environmental Descriptors (EDs; state indicators) with pre-defined measurement units (e.g., m, %) or categories (e.g., species type). Evidence for pressures, whether abiotic, biotic or human-influenced, is similarly accumulated, but EDs often differ from those used to determine impacts. Each impact and pressure term is defined separately, allowing flexible combination into 'impact (pressure)' categories, and all are listed in an openly accessible glossary to ensure consistent use and common understanding. The taxonomy and framework are globally relevant and can reference EDs quantified on the ground, retrieved/classified remotely (from ground-based, airborne or spaceborne sensors) or predicted through modelling. By providing capacity to more consistently describe change processes-including land degradation, desertification and ecosystem restoration-the overall framework addresses a wide and diverse range of local to international needs including those relevant to policy, socioeconomics and land management. Actions in response to impacts and pressures and monitoring towards targets are also supported to assist future planning, including impact mitigation actions
Measurement of the branching fraction
The branching fraction is measured in a data sample
corresponding to 0.41 of integrated luminosity collected with the LHCb
detector at the LHC. This channel is sensitive to the penguin contributions
affecting the sin2 measurement from The
time-integrated branching fraction is measured to be . This is the most precise measurement to
date
Model-independent search for CP violation in D0âKâK+ÏâÏ+ and D0âÏâÏ+Ï+Ïâ decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states KâK+ÏâÏ+ and ÏâÏ+Ï+Ïâ is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fbâ1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the KâK+ÏâÏ+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the ÏâÏ+Ï+Ïâ final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
- âŠ