455 research outputs found
PMH40 How do Patients Describe Their Depression? - Incorporating the Patient's Voice Into Instrument Development
Letter from CGIAR Chairman Ismail Serageldin to CGIAR heads of delegation, board chairs, center directors and the TAC chairman and secretariat, leading up to ICW94. Serageldin described the work of various ad hoc and standing bodies in preparation for International Centers Week 1994 and the Ministerial-level Meeting being planned for early 1995. He also announced that as a result of additional funding by donors and matching funds from the World Bank, the 1994 core program was fully funded
Hospital strain colonization by Staphylococcus epidermidis
The skin and mucous membranes of healthy subjects are colonized by strains of Staphylococcus epidermidis showing a high diversity of genomic DNA polymorphisms. Prolonged hospitalization and the use of invasive procedures promote changes in the microbiota with subsequent colonization by hospital strains. We report here a patient with prolonged hospitalization due to chronic pancreatitis who was treated with multiple antibiotics, invasive procedures and abdominal surgery. We studied the dynamics of skin colonization by S. epidermidis leading to the development of catheter-related infections and compared the genotypic profile of clinical and microbiota strains by pulsed field gel electrophoresis. During hospitalization, the normal S. epidermidis skin microbiota exhibiting a polymorphic genomic DNA profile was replaced with a hospital-acquired biofilm-producer S. epidermidis strain that subsequently caused repetitive catheter-related infections.29429
Exploring nu signals in dark matter detectors
We investigate standard and non-standard solar neutrino signals in direct
dark matter detection experiments. It is well known that even without new
physics, scattering of solar neutrinos on nuclei or electrons is an irreducible
background for direct dark matter searches, once these experiments each the ton
scale. Here, we entertain the possibility that neutrino interactions are
enhanced by new physics, such as new light force carriers (for instance a "dark
photon") or neutrino magnetic moments. We consider models with only the three
standard neutrino flavors, as well as scenarios with extra sterile neutrinos.
We find that low-energy neutrino--electron and neutrino--nucleus scattering
rates can be enhanced by several orders of magnitude, potentially enough to
explain the event excesses observed in CoGeNT and CRESST. We also investigate
temporal modulation in these neutrino signals, which can arise from geometric
effects, oscillation physics, non-standard neutrino energy loss, and
direction-dependent detection efficiencies. We emphasize that, in addition to
providing potential explanations for existing signals, models featuring new
physics in the neutrino sector can also be very relevant to future dark matter
searches, where, on the one hand, they can be probed and constrained, but on
the other hand, their signatures could also be confused with dark matter
signals.Comment: 38 pages, 8 figures, 1 table; v3: eq 3 and nuclear recoil plots
corrected, footnote added, conclusions unchange
An update on the Hirsch conjecture
The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to
George Dantzig. It states that the graph of a d-dimensional polytope with n
facets cannot have diameter greater than n - d.
Despite being one of the most fundamental, basic and old problems in polytope
theory, what we know is quite scarce. Most notably, no polynomial upper bound
is known for the diameters that are conjectured to be linear. In contrast, very
few polytopes are known where the bound is attained. This paper collects
known results and remarks both on the positive and on the negative side of the
conjecture. Some proofs are included, but only those that we hope are
accessible to a general mathematical audience without introducing too many
technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2
and put into the appendix arXiv:0912.423
The general purpose analog computer and computable analysis are two equivalent paradigms of analog computation
In this paper we revisit one of the rst models of analog
computation, Shannon's General Purpose Analog Computer (GPAC).
The GPAC has often been argued to be weaker than computable analysis.
As main contribution, we show that if we change the notion of GPACcomputability
in a natural way, we compute exactly all real computable
functions (in the sense of computable analysis). Moreover, since GPACs
are equivalent to systems of polynomial di erential equations then we
show that all real computable functions can be de ned by such models
Manifestation of triplet superconductivity in superconductor-ferromagnet structures
We study proximity effects in a multilayered superconductor/ferromagnet (S/F)
structure with arbitrary relative directions of the magnetization . If
the magnetizations of different layers are collinear the superconducting
condensate function induced in the F layers has only a singlet component and a
triplet one with a zero projection of the total magnetic moment of the Cooper
pairs on the direction. In this case the condensate penetrates the F
layers over a short length determined by the exchange energy . If
the magnetizations are not collinear the triplet component has, in
addition to the zero projection, the projections . The latter component
is even in the momentum, odd in the Matsubara frequency and penetrates the F
layers over a long distance that increases with decreasing temperature and does
not depend on (spin-orbit interaction limits this length). If the thickness
of the F layers is much larger than , the Josephson coupling between
neighboring S layers is provided only by the triplet component, so that a new
type of superconductivity arises in the transverse direction of the structure.
The Josephson critical current is positive (negative) for the case of a
positive (negative) chirality of the vector . We demonstrate that this
type of the triplet condensate can be detected also by measuring the density of
states in F/S/F structures.Comment: 14 pages; 9 figures. Final version, to be published in Phys. Rev.
PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection
We provide ingredients and recipes for computing signals of TeV-scale Dark
Matter annihilations and decays in the Galaxy and beyond. For each DM channel,
we present the energy spectra of electrons and positrons, antiprotons,
antideuterons, gamma rays, neutrinos and antineutrinos e, mu, tau at
production, computed by high-statistics simulations. We estimate the Monte
Carlo uncertainty by comparing the results yielded by the Pythia and Herwig
event generators. We then provide the propagation functions for charged
particles in the Galaxy, for several DM distribution profiles and sets of
propagation parameters. Propagation of electrons and positrons is performed
with an improved semi-analytic method that takes into account
position-dependent energy losses in the Milky Way. Using such propagation
functions, we compute the energy spectra of electrons and positrons,
antiprotons and antideuterons at the location of the Earth. We then present the
gamma ray fluxes, both from prompt emission and from Inverse Compton scattering
in the galactic halo. Finally, we provide the spectra of extragalactic gamma
rays. All results are available in numerical form and ready to be consumed.Comment: 57 pages with many figures and tables. v4: updated to include a 125
higgs boson, computation and discussion of extragalactic spectra corrected,
some other typos fixed; all these corrections and updates are reflected on
the numerical ingredients available at
http://www.marcocirelli.net/PPPC4DMID.html they correspond to Release 2.
Measurements of Direct CP Violation, CPT Symmetry, and Other Parameters in the Neutral Kaon System
We present a series of measurements based on K -> pi+pi- and K -> pi0pi0
decays collected in 1996-1997 by the KTeV experiment (E832) at Fermilab. We
compare these four K -> pipi decay rates to measure the direct CP violation
parameter Re(e'/e) = (20.7 +- 2.8) x 10^-4. We also test CPT symmetry by
measuring the relative phase between the CP violating and CP conserving decay
amplitudes for K->pi+pi- (phi+-) and for K -> pi0pi0 (phi00). We find the
difference between the relative phases to be Delta-phi = phi00 - phi+- = (+0.39
+- 0.50) degrees and the deviation of phi+- from the superweak phase to be
phi+- - phi_SW =(+0.61 +- 1.19) degrees; both results are consistent with CPT
symmetry. In addition, we present new measurements of the KL-KS mass difference
and KS lifetime: Delta-m = (5261 +- 15) x 10^6 hbar/s and tauS = (89.65 +-
0.07) x 10^-12 s.Comment: Submitted to Phys. Rev. D, August 6, 2002; 37 pages, 32 figure
Oscillating Asymmetric Dark Matter
We study the dynamics of dark matter (DM) particle-antiparticle oscillations
within the context of asymmetric DM. Oscillations arise due to small DM
number-violating Majorana-type mass terms, and can lead to recoupling of
annihilation after freeze-out and washout of the DM density. We derive the
density matrix equations for DM oscillations and freeze-out from first
principles using nonequilibrium field theory, and our results are qualitatively
different than in previous studies. DM dynamics exhibits
particle-vs-antiparticle "flavor" effects, depending on the interaction type,
analogous to neutrino oscillations in a medium. "Flavor-sensitive" DM
interactions include scattering or annihilation through a new vector boson,
while "flavor-blind" interactions include scattering or s-channel annihilation
through a new scalar boson, or annihilation to pairs of bosons. In particular,
we find that flavor-sensitive annihilation does not recouple when coherent
oscillations begin, and that flavor-blind scattering does not lead to
decoherence.Comment: 23 pages, 4 figures, A typo fixed, References adde
- …