99 research outputs found

    More about spontaneous Lorentz-violation and infrared modification of gravity

    Full text link
    We consider a model with Lorentz-violating vector field condensates, in which dispersion laws of all perturbations, including tensor modes, undergo non-trivial modification in the infrared. The model is free of ghosts and tachyons at high 3-momenta. At low 3-momenta there are ghosts, and at even lower 3-momenta there exist tachyons. Still, with appropriate choice of parameters, the model is phenomenologically acceptable. Beyond a certain large distance scale and even larger time scale, the gravity of a static source changes from that of General Relativity to that of van Dam--Veltman--Zakharov limit of the Fierz--Pauli theory. Yet the late time cosmological evolution is always determined by the standard Friedmann equation, modulo small correction to the ``cosmological Planck mass'', so the modification of gravity cannot by itself explain the accelerated expansion of the Universe. We argue that the latter property is generic in a wide class of models with condensates.Comment: 15 pages, 1 figure, JHEP3.cls; Added reference

    Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale

    Full text link
    We present an extension of the Randall--Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam--Veltman--Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.Comment: 28 page

    Ghost Condensation and a Consistent Infrared Modification of Gravity

    Full text link
    We propose a theoretically consistent modification of gravity in the infrared, which is compatible with all current experimental observations. This is an analog of Higgs mechanism in general relativity, and can be thought of as arising from ghost condensation--a background where a scalar field \phi has a constant velocity, = M^2. The ghost condensate is a new kind of fluid that can fill the universe, which has the same equation of state, \rho = -p, as a cosmological constant, and can hence drive de Sitter expansion of the universe. However, unlike a cosmological constant, it is a physical fluid with a physical scalar excitation, which can be described by a systematic effective field theory at low energies. The excitation has an unusual low-energy dispersion relation \omega^2 \sim k^4 / M^2. If coupled to matter directly, it gives rise to small Lorentz-violating effects and a new long-range 1/r^2 spin dependent force. In the ghost condensate, the energy that gravitates is not the same as the particle physics energy, leading to the possibility of both sources that can gravitate and antigravitate. The Newtonian potential is modified with an oscillatory behavior starting at the distance scale M_{Pl}/M^2 and the time scale M_{Pl}^2/M^3. This theory opens up a number of new avenues for attacking cosmological problems, including inflation, dark matter and dark energy.Comment: 42 pages, LaTeX 2

    Spiral Multi-component Structure in Pade - Approximant QCD

    Get PDF
    We present a graphical method of analyzing the infra-red fixed point structure of Pade approximant QCD. The analysis shows a spiral multi-component couplant structure as well as an infra-red attractor behavior of PQCD couplant for all flavors 0≤Nf≤160 \le N_{f} \le 16.Comment: 78 pages, 4 tables, 44 graph

    On the Behavior of the Effective QCD Coupling alpha_tau(s) at Low Scales

    Full text link
    The hadronic decays of the tau lepton can be used to determine the effective charge alpha_tau(m^2_tau') for a hypothetical tau-lepton with mass in the range 0 < m_tau' < m_tau. This definition provides a fundamental definition of the QCD coupling at low mass scales. We study the behavior of alpha_tau at low mass scales directly from first principles and without any renormalization-scheme dependence by looking at the experimental data from the OPAL Collaboration. The results are consistent with the freezing of the physical coupling at mass scales s = m^2_tau' of order 1 GeV^2 with a magnitude alpha_tau ~ 0.9 +/- 0.1.Comment: 15 pages, 4 figures, submitted to Physical Review D, added references, some text added, no results nor figures change

    On the influence of a Coulomb-like potential induced by the Lorentz symmetry breaking effects on the Harmonic Oscillator

    Full text link
    In this work, we obtain bound states for a nonrelativistic spin-half neutral particle under the influence of a Coulomb-like potential induced by the Lorentz symmetry breaking effects. We present a new possible scenario of studying the Lorentz symmetry breaking effects on a nonrelativistic quantum system defined by a fixed space-like vector field parallel to the radial direction interacting with a uniform magnetic field along the z-axis. Furthermore, we also discuss the influence of a Coulomb-like potential induced by Lorentz symmetry violation effects on the two-dimensional harmonic oscillator.Comment: 14 pages, no figure, this work has been accepted for publication in The European Physical Journal Plu

    The renormalization group inspired approaches and estimates of the tenth-order corrections to the muon anomaly in QED

    Get PDF
    We present the estimates of the five-loop QED corrections to the muon anomaly using the scheme-invariant approaches and demonstrate that they are in good agreement with the results of exact calculations of the corresponding tenth-order diagrams supplemented by the additional guess about the values of the non-calculated contributions.Comment: LATEX 15 pages, figures available upon request; preprint CERN-TH.7518/9

    Threshold analyses and Lorentz violation

    Full text link
    In the context of threshold investigations of Lorentz violation, we discuss the fundamental principle of coordinate invariance, the role of an effective dynamical framework, and the conditions of positivity and causality. Our analysis excludes a variety of previously considered Lorentz-breaking parameters and opens an avenue for viable dispersion-relation investigations of Lorentz violation.Comment: 9 page

    Dark Matter and Fundamental Physics with the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) is a project for a next-generation observatory for very high energy (GeV-TeV) ground-based gamma-ray astronomy, currently in its design phase, and foreseen to be operative a few years from now. Several tens of telescopes of 2-3 different sizes, distributed over a large area, will allow for a sensitivity about a factor 10 better than current instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few tens of GeV to several tens of TeV, and a field of view of up to 10 deg. In the following study, we investigate the prospects for CTA to study several science questions that influence our current knowledge of fundamental physics. Based on conservative assumptions for the performance of the different CTA telescope configurations, we employ a Monte Carlo based approach to evaluate the prospects for detection. First, we discuss CTA prospects for cold dark matter searches, following different observational strategies: in dwarf satellite galaxies of the Milky Way, in the region close to the Galactic Centre, and in clusters of galaxies. The possible search for spatial signatures, facilitated by the larger field of view of CTA, is also discussed. Next we consider searches for axion-like particles which, besides being possible candidates for dark matter may also explain the unexpectedly low absorption by extragalactic background light of gamma rays from very distant blazars. Simulated light-curves of flaring sources are also used to determine the sensitivity to violations of Lorentz Invariance by detection of the possible delay between the arrival times of photons at different energies. Finally, we mention searches for other exotic physics with CTA.Comment: (31 pages, Accepted for publication in Astroparticle Physics

    Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope

    Get PDF
    We analyze the timing of photons observed by the MAGIC telescope during a flare of the active galactic nucleus Mkn 501 for a possible correlation with energy, as suggested by some models of quantum gravity (QG), which predict a vacuum refractive index \simeq 1 + (E/M_{QGn})^n, n = 1,2. Parametrizing the delay between gamma-rays of different energies as \Delta t =\pm\tau_l E or \Delta t =\pm\tau_q E^2, we find \tau_l=(0.030\pm0.012) s/GeV at the 2.5-sigma level, and \tau_q=(3.71\pm2.57)x10^{-6} s/GeV^2, respectively. We use these results to establish lower limits M_{QG1} > 0.21x10^{18} GeV and M_{QG2} > 0.26x10^{11} GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC sensitivity to propagation effects at these levels. Thermal plasma effects in the source are negligible, but we cannot exclude the importance of some other source effect.Comment: 12 pages, 3 figures, Phys. Lett. B, reflects published versio
    • …
    corecore