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I. Introduction

The direct analytical or numerical calculations of the higher-order terms to the physical
quantities in the concrete renormalization schemes provide the important information about
the behaviour of the corresponding perturbative approximations. However, there are also some
other approaches to treat the problem of the extraction of certain information from the trun-
cated perturbative series. These approaches are the principle of minimal sensitivity (PMS) [1]
and the effective charges (ECH) prescription [2], which is equivalent a posteriori to the scheme-
invariant perturbation theory [3]. Of course, it is better to use these approaches directly in the
concrete orders of the perturbation theory, as was done in QCD in Refs. [4]-[8]. However, if one
adopts the point of view that these methods really pretend to the role of “optimal” procedures
in the sense that they might provide better convergence of the corresponding approximations in
the non-asymptotic regime, it is possible to try to go one step further and apply the procedure
of re-expansion of the “optimized” expressions in the coupling constant of an initial scheme.
One can consider the residual (N+1)-th order term as the estimate of the (N+1)-th order
correction in the initial scheme [1].

The re-expansion procedure was already applied for the analysis of the perturbative predic-
tions for (g−2)µ in QED [1, 9] (for related considerations see Ref. [10]) and for the estimates of
the QCD corrections to definite physical quantities. In these works, the quantities under study
are the Drell-Yan cross-section at the O(α2

s)-level [11], R(s) = σtot(e
+e− → hadrons)/σ(e+e− →

µ+µ−), Rτ = Γ(τ → ντ + hadrons)/Γ(τ → ντνee), non-polarized and polarized Bjorken sum
rules at the O(α4

s) and even O(α5
s)- levels [12, 13] and the singlet contribution to the Ellis-Jaffe

sum rule at the O(α3
s)-order [14].

It is clear that the re-expansion formalism, which is similar to the procedure used in Ref.
[15] to predict the RG-controlable ln(mµ/me)-terms from the expression for (g − 2)µ through
the effective coupling constant α(mµ/me), correctly reproduces the RG-controlable terms [1],
[16]. One can also hope that it can give the impression about the possible values of the
constant terms as well. This hope is based on the observation of the existence of a satisfactory
agreement of the results of application of the re-expansion procedure in QED [9] and QCD
[12, 13] with the results of the explicit calculations. It should be stressed that on the contrary
to the RG considerations of Ref. [15], the “optimization methods” are dealing with the full
RG-invariance of the quantities under consideration, which produce the additional equations,
relevant to the freedom in the choice of the higher-order coefficients of the β-function. The
solution of these equations gives the possibility to define the sets of scheme-invariants [1] which
are the cornerstones of the “optimization” methods.

However, in the definite cases the procedure of re-expansion of the “optimized” results
can run against some reef, which was overlooked in the process of some previous applications
[1, 9, 10]. In the case of the analysis of the perturbative series for (g − 2)µ this problem grows
out from the non-careful treatment of the light-by-light scattering graphs with the electron loop
coupled to the external photon line.

In Sec.I of this work we repeat the decription of the basis of the formalism used by us. The
exact expressions for the terms in the re-expansion formulas are derived. It is demonstrated
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that the estimates obtained using the re-expansion of the ECH expressions are identical to the
results of calculations of the (N+1)-th order corrections in the special scheme, where all lower
order coefficients of the physical quantities and the QCD β-function are defined in a certain fixed
scheme (in the case of QED the on-shell (OS) scheme is usually used) and the (N+1)-th order
coefficient of the β-function coincides with the (N+1)-th order scheme-invariant coefficient of
the ECH β-function βeff .

In Sec.II, using the information about the four-loop coefficient of the QED β-function in
the OS scheme [17] we generalize the considerations of Refs. [1, 9, 10] to the five-loop level. We
follow the proposals of Ref. [18] and consider the light-by-light scattering graphs mentioned
above separately in our RG-inspired analysis. We show that this empirical improvement leads
to more satisfactory and thus more reliable estimates of the five-loop contributions to (g − 2)µ

than in the case of non-separation of the light-by-light scattering contributions. Finally in the
Appendix we present the expressions for the six-loop RG-controllable contributions to the muon
anomalous magnetic moment which follow from the analysis of Sec.II.

II. The Description of the Formalism

Consider first the order O(aN) approximation of a Euclidean renormalization group invariant
quantity

DN = d0a(1 +
N−1
∑

i=1

dia
i) (1)

with a = αs/π being the solution of the corresponding renormalization group equation for the
β-function which is defined as

µ2 ∂a

∂µ2
= β(a) = −β0a

2(1 +
N−1
∑

i=1

cia
i) . (2)

The coefficients di, i ≥ 1 and ci, i ≥ 2 are scheme-dependent. In order to calculate them in
practice it is necessary to specify the scheme of subtractions of the ultraviolet divergences. In
QED the OS scheme is commonly used. However, this scheme is not the unique prescription for
fixing the RS ambiguities, which affect the values of these coefficients. In both phenomenological
and theoretical studies other methods are also widely applied.

The PMS [1] and ECH [2] prescriptions stand out from various methods of treating scheme-
dependence ambiguities. Indeed, they are based on the conceptions of the scheme-invariant
quantities, which are defined as the combinations of the scheme-dependent coefficients in Eqs.
(1) and (2). Both these methods pretend to the role of “optimal” prescriptions, in the sense
that they might provide better convergence of the corresponding approximations in the non-
asymptotic regime, and thus allow an estimation of the uncertainties of the perturbative series in
the definite order of perturbation theory. Therefore, applying these “optimal” methods one can
try to estimate the effects of the order O(aN+1)-corrections starting from the approximations
Dopt

N (aopt) calculated in a certain “optimal” approach [1], [9], [16].

Let us follow the considerations of Ref. [1] re-expand Dopt
N (aopt) in terms of the coupling
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constant a of the particular scheme

Dopt
N (aopt) = DN (a) + δDopt

N aN+1 (3)

where
δDopt

N = ΩN (di, ci) − ΩN (dopt
i , copt

i ) (4)

are the numbers which simulate the coefficients of the order O(aN+1)-corrections to the physical
quantity, calculated in the particular initial scheme. The coefficients ΩN can be obtained from
the following system of equations:

∂

∂τ
(DN + ΩNaN+1) = O(aN+2),

∂

∂ci

(DN + ΩNaN+1) = O(aN+2), i ≥ 2 (5)

where the parameter τ = β0ℓn(µ2/Λ2) represents freedom in the choice of the renormalization
point µ. The conventional scale parameter Λ will not explicitly appear in all our final formulas.
The system of these equations can be solved following the lines of ref. [1]. Let us stress again
that the difference between the “optimization” equations and the RG-approach of Ref. [15] lies
in the fact that the latter one is dealing with the first equation from the the system of Eq.(5)
only. The quantities Ωl can be related to the scheme invariants ρl in the following way:

ρl = dl +
1

l − 1
cl − Ωl(d1, ..., dl−1; c1, ..., cl−1). (6)

Note that the general expressions of the scheme-invariants ρl and of the correction terms Ωl can
be defined in different ways. Various definitions differ by scheme-independent constant terms.
We are choosing these correlated constant terms imposing the condition that the expressions
for the scheme-invariants ρl are connected with the coefficients cECH

l of the ECH β-function

βeff(aECH) = −β0a
2
ECH

(

1 + c1aECH +
∑

i≥2

cECH
i ai

ECH

)

(7)

as

ρl =
cECH
l

l − 1
(8)

where
D(aECH) = d0aECH(a) . (9)

The concrete expressions for the invariants ρl and thus for the correction terms Ωl can be
derived from the following equation:

βeff(aECH) =
∂aECH

∂a
β(a). (10)

We present here the final expressions, which are already known [1]:

Ω2 = d0d1(c1 + d1), (11)
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Ω3 = d0d1(c2 −
1

2
c1d1 − 2d2

1 + 3d2) . (12)

and the new terms which we evaluated

Ω4 =
d0

3
(3c3d1 + c2d2 − 4c2d

2
1 + 2c1d1d2 − c1d3 + 14d4

1 − 28d2
1d2 + 5d2

2 + 12d1d3) (13)

Ω5 =
d0

4
(4c4d1 − 8c3d

2
1 + 2c3d2 − 4c2d1d2 + 8c2d

3
1 − 2c1d4 + 6c1d

4
1 − 16c1d

2
1d2 + 3c1d

2
2

+8c1d1d3 − 48d5
1 + 120d3

1d2 − 48d1d
2
2 + 16d2d3 − 56d2

1d3 + 20d1d4). (14)

These terms reproduce the RG controllable logarithmic contributions. In the case of the five-
loop level one can reobtain the QED results presented in Ref. [19]. We discuss this point in
more detail in the next Section.

It should be stressed that in the ECH approach dECH
i ≡ 0 for all i ≥ 1. Therefore one gets

the following expressions for the higher-order corrections in Eq. (3):

δDECH
2 = Ω2(d1, c1) (15)

δDECH
3 = Ω3(d1, d2, c1, c2) (16)

δDECH
4 = Ω4(d1, d2, d3, c1, c2, c3) (17)

where Ω2, Ω3 and Ω4 are defined in Eqs. (11), (12) and (13) respectively.

One can understand from Eqs. (6), (8) that the expressions for ΩN and for the corrections
δDECH

N in Eqs. (15)-(17) are the exact numbers which are related to the special scheme. This
scheme is identical to the initial scheme at the lower order levels and is defined by the condition
cN = cECH

N at the (N+1)-order, where cECH
N is considered as an unknown number. This means

that the correction coefficients δDN are related to the initial scheme only partly. However, it
was shown in Refs. [12, 13] that in certain cases the numerical values of these coefficients are in
satisfactory agreement with the results of the explicit calculations. A posteriori we consider this
fact as an argument in favour of the possibility of the application of the re-expansion procedure
in the cases discussed by us.

In order to find similar corrections to Eq. (3) in the N-th order of perturbation theory
starting from the PMS approach [1], it is necessary to use the relations obtained in Ref. [20]
between the coefficients dPMS

i and cPMS
i (i ≥ 1) in the expression for the order O(aN

PMS)
approximation DPMS

N (aPMS) of the physical quantity under consideration:

dPMS
i =

1

i + 1

(

N − 2i − 1

N − 1

)

cPMS
i + O(aPMS) (18)

where cPMS
1 = c1. Using now Eq. (18) one can find the corresponding coefficients of the NLO

approximation DPMS
2 (aPMS)

dPMS
1 = −

1

2
c1 + O(aPMS) (19)
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and the related expression for the NNLO correction δDPMS
2

δDPMS
2 = δDECH

2 +
d0c

2
1

4
(20)

where δDECH
2 is defined by Eqs. (15), (11).

Repeating now the similar considerations at the NNLO level we get from Eq. (18) the
following expressions for the NLO and NNLO coefficients dPMS

1 and dPMS
2

dPMS
1 = 0 + O(aPMS);

dPMS
2 = −

1

3
cPMS
2 + O(aPMS). (21)

Substituting now Eqs. (21) into Eq. (12) one can observe that the corresponding next-to-
next-to-next-to-leading order (N3LO) correction δDPMS

3 in the re-expansion formula of Eq. (3)
identically coincide with δDECH

3 defined by Eqs. (16), (12), namely that

δDPMS
3 = δDECH

3 . (22)

A similar observation was made in Ref. [9] using different (but related) considerations. In
fact this expression means that the order O(aPMS) correction to dPMS

1 is cancelling the leading
order term in the expression for dPMS

2 . We have checked this feature explicitely.

In fourth order of the perturbation theory the additional contribution to δDPMS
4 has a more

complicated structure. In order to get it, it is necessary to substitute the following expressions

dPMS
1 =

1

6
c1 + O(a)

dPMS
2 = −

1

9
cPMS
2 + O(a)

dPMS
3 = −

1

4
cPMS
3 + O(a) (23)

into the expressions for the scheme-invariants ρ2 and ρ3 and then into the analytical expression
for Ω4. The expression for Ω4(d

PMS
i , cPMS

i ) in Eq. (4), which results from this analysis, reads:

Ω4(d
PMS
i , cPMS

i ) =
d0

3
[
1

4
c1c

PMS
3 −

4

81
(cPMS

2 )2
−

5

81
c2
1c

PMS
2 +

7

648
c4
1] (24)

where

cPMS
2 =

9

8
(cECH

2 +
7

36
c2
1)

=
9

8
(d2 + c2 − d2

1 − c1d1 +
7

36
c2
1) + O(a) (25)

and

cPMS
3 = 4(d3 +

1

2
c3 − c2d1 − 3d1d2 + 2d3

1) +
1

2
c1(d2 + c2 + 3d2

1 − c1d1 +
1

108
c2
1) + O(a). (26)
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The expressions for Eqs. (24) - (26) are the pure numbers, which do not depend on the choice
of the initial scheme. We will show in the next Section that in the case of the consideration
of perturbative series for (g − 2)µ the numerical values of Ω4(d

PMS
i , cPMS

i ) are small and thus
the a posteriori approximate equivalence of the ECH and PMS approaches is preserved for the
quantities under consideration at this level also.

In certain considerations we will need to use a generalization of the expression for Ω2 to the
case when the intitial perturbative series is starting from corrections of order O(ap) with p > 1

D
(p)
N = d0a

p(1 +
∑

i≥1

dia
N). (27)

In this case the expression for the corrections terms read

(Ω
(p)
2 )ECH =

p + 1

2p
d0d

2
1 + d0d1c1. (28)

The corresponding correction related to the PMS-improved expression was originally obtained
in Ref. [1]:

(Ω
(p)
2 )PMS =

p + 1

2p
d0d

2
1 + d0d1c1 +

p

2(p + 1)
d0c

2
1. (29)

III. Applications to (g − 2)µ

It is well-known that the expressions for anomalous magnetic moments of the electron
ae = (g − 2)e/2 and muon aµ = (g − 2)µ/2 are known at the four-loop order from the results of
calculations of Ref. [21] and Refs. [22], [23] respectively. The three-loop correction to ae is now
known with more accuracy than previously [24]. Combining the currently available information
about the coefficients of the perturbative series for ae and aµ we have the following expressions:

ae = 0.5a − 0.3294789...a2 + 1.17619(21)a3
− 1.434(138)a4 (30)

aµ − ae = 1.09433583(7)a2 + 22.869265(4)a3 + 127.55(41)a4 (31)

where the expansion parameter a = α/π is related to the fine structure constant α and the last
term in Eq. (31) is the result of the most recent calculations of Ref. [23] stimulated by the
work of Ref. [17]. Combining Eq. (30) with Eq. (31) we arrive at the following approximate
expression for aµ:

aµ = 0.5a + 0.76585a2 + 24a3 + 126a4 + O(a5). (32)

The order O(a5) correction to aµ is only partly known [22]. Our aim will be to try to touch
the existing uncertainty due to the totally non-calculated order O(a5)-contribution to Eq. (32)
using the re-expansion procedure outlined in the previous section , which is compatible with
the RG-formalism.

It is known that in the OS-scheme the coefficients of the corresponding perturbative series
depend on the large ln(mµ/me)-contributions starting from the two-loop level. The parts of
these effects are governed by the RG-method [15, 25] (for a recent application of the RG method
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to aµ, see Refs. [26, 19]). However, there are also certain ln(mµ/me)-contributions, which
are not governed by the RG-method. They are associated with the light-by-light-scattering
electron loop insertions coupled to the external photon line. These contributions appear first
in the three-loop graphs, which were subsequently calculated numerically in the works of Ref.
[27, 22] and recently evaluated analytically in the work of Ref. [28].

In view of the different origin of the lower ln(mµ/me)-contributions we divide all diagrams
into two classes. The first class contains all diagrams with an external muon vertex and dressed
interenal photon lines (see Fig. 1). As well as in Ref. [22] we will not include the diagrams
with electron loops to which four internal photon lines are attached. However, we will include
four-loop diagrams typical to ae but with substitution of the external electron vertex to the
muon one. The second class of the diagrams includes the diagrams with electron light-by-light
scattering subgraph, to which three and four internal photon lines are attached (see Fig.2).
Let us stress that all log(mµ/me)-terms of the diagrams contributing to the first class are
totally controlled by the RG-method, while in class (II) only the parts of these contributions
are governed by the RG-technique.

In accordance with our classification we represent the expression for aµ in the following form

aµ = a(I)
µ + a(II)

µ . (33)

The concrete contributions to Eq.(33) read

a(I)
µ = d

(I)
0 a(1 + d

(I)
1 a + d

(I)
2 a2 + d

(I)
3 a3 + ...) (34)

a(II)
µ = d

(II)
0 a3(1 + d

(II)
1 a + d

(II)
2 a2 + ...). (35)

Note, that the coefficients di (i ≥ 1) contain the RG-controllable ln(x) = ln(mµ/me)-terms.
Indeed, the corresponding contributions to aµ are governed by the RG-equation

(m2 ∂

∂m2
+ β(a)

∂

∂a
)a(I,II)

µ = 0 (36)

where β(a) is the QED β-function in the OS-scheme, which is defined as

m2 ∂a

∂m2
= β(a) =

∑

i≥0

βia
i+2. (37)

To our point of view, the separation of all diagrams to the two classes mentioned above is
respected by the property of the RG-invariance. At least we do not know the arguments why
the sum of the diagrams which belong to the class (I) and to the class (II) should not obey the
RG-equations seperately.

The coefficients of the β-function are known at the four-loop level [17]. They have the
following form

7



β0 =
1

3

β1 =
1

4

β2 = −
121

288
= −0.42

β3 =
(

5561

5184
−

23

9
ζ(2) +

8

3
ζ(2) ln(2) −

7

8
ζ(3)

)

1

2
= −0.571. (38)

Thus, the related coefficients ci = βi/β0 (i ≥ 1) read c1 = 3/4, c2 = −1.26, c3 = −1.713. Let
us write down the asymptotic expansions of the coefficients of the contributions aµ as

d
(I)
0 = B1

d
(I)
0 d

(I)
1 = B2 + C2 ln(x)

d
(I)
0 d

(I)
2 = B3 + C3 ln(x) + D3 ln2(x)

d
(I)
0 d

(I)
3 = B4 + C4 ln(x) + D4 ln2(x) + E4 ln3(x)

d
(I)
0 d

(I)
4 = B5 + C5 ln(x) + D5 ln2(x) + E5 ln3(x) + F5 ln4(x) (39)

and

d
(II)
0 = B1

d
(II)
0 d

(II)
1 = B2 + C2 ln(x)

d
(II)
0 d

(II)
2 = B3 + C3 ln(x) + D3 ln2(x). (40)

The coefficients Ci, Di, Ei, Fi and Ci, Di can be related to the coefficients of the β-function using
either the RG-considerations of Refs. [15, 25, 19] or the explicit expressions for the coefficients

Ωi and Ω
(p)
i in the corresponding re-expansion formulas (see Eqs.(11)-(14) and Eq.(28)). The

results of the corresponding analysis have the following form

C2 = 2β0B1 (41)

C3 = 4β0B2 + 2β1B1

D3 = 4β2
0B1 (42)

C4 = 6β0B3 + 4β1B2 + 2β2B1

D4 = 12β2
0B2 + 10β0β1B1

E4 = 8β3
0B1 (43)

C5 = 8β0B4 + 6β1B3 + 4β2B2 + 2β3B1

D5 = 24β2
0B3 + 28β0β1B2 + 6β2

1B1 + 12β0β2B1

E5 = 32β3
0B2 +

104

3
β2

0β1B1

F5 = 16β4
0B1 (44)
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C2 = 6β0B1

C3 = 8β0B2 + 6β1B1

D3 = 24β2
0B1. (45)

Note, that in the case of the diagrams of set (II) the corresponding coefficients B1, B2 and B3

contain the contributions of the non-controllable by the RG method ln(x)-terms.

Let us first discuss the applications of the procedure of Sec.II to the diagrams of set (I).
In this case the correction terms Ω2 − Ω4 reproduce all ln(x)-contributions presented in Eqs.
(39). Moreover, one can get from re-expansion procedure the exact values of the constant
terms Bi (i ≥ 3) which do not depend on the ln(x)-terms. In the case of the application of the
ECH-improved variant of the OS-scheme these constant terms are defined by the conditions

Bi = Ωi−1(d
OS
0 , dOS

1 , ..., dOS
i−2, c1, .., c

OS
i−2)

= Ωi−1(B
OS
1 , ..., Bi−1, c1, ..., c

OS
i−2). (46)

Similar terms which arise from the PMS-improved expressions can be obtained after taking into
account the additional scheme-independent contributions derived in Sec.II. We will demonstrate
that the numerical values of these contributions in the cases considered by us are not large.

The concrete values of the coefficients B1, B
OS
2 , BOS

3 are known from a comparison of the
results of the RG-inspired analysis with the results of the analytical and numerical calculations
[22]. The coefficient B1 = 0.5 is of course well known. The asymptotic expression of the
coefficient B2, derived in the limit me/mµ → 0, can be found in Ref. [22]: BOS

2 = −25
36

+ a(4)
e =

−1.022923. The value of the coefficient BOS
3 = 2.741 was obtained in Ref. [22] after subtracting

the contributions of the light-by-light scattering graphs of the set (II) and of the RG-controllable
contribution of Eq. (39) from the expression for the three-loop correction to aµ.

The value of the coefficient BOS
4 , which will be used by us, is different from the one given

in Ref. [22]. The difference comes from the fact that contrary to the classification of Ref.
[22], we are including into the considered set (I) the four-loop diagrams typical to ae but with
substitution of the electron vertex and internal electron loops to the muon ones. Moreover, it
is necessary to modify the value of BOS

4 presented in Ref. [22] in accordance with the results of
the analytical [17] and numerical [23] re-calculations of the diagrams with three-loop insertion
into the internal photon line of the lowest order contribution to aµ.

In order to determine the value of the coefficient BOS
4 in our case we used the following

expression
BOS

4 = a(8)
µ − A(8)

µ (γγ) − C4 ln(x) − D4 ln2(x) − E4 ln3(x) (47)

where C4, D4 and E4 are determined by Eqs.(43) and the value of A(8)
µ (γγ) ≈ −116.7 is the

sum of the eight-order contributions of the diagrams with electron light-by-light scattering
subgraphs [22]. The numerical value of the coefficient BOS

4 is thus BOS
4 = −7.74.

In order to study the predictive abilities of the re-expansion procedure described in Sec. II
we present in Table 1 the numerical results of our estimates of the coefficients Bi (i ≥ 3) and
compare them with the exact results for BOS

3 and BOS
4 presented above.
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Order BOS
i Bi(ECH) Bi(PMS)

i=1 0.5 —- —
i=2 − 1.022923 — —
i=3 2.741 1.326 1.396
i=4 −7.74 −5.48 −5.48
i=5 — 41.6 41.7

Table 1: Estimated values of the coefficients Bi for the diagrams of set (I).

One can see that the re-expansion procedure used by us is reproducing well enough the values
of the coefficients B3 and B4 (it gives the correct sign and predicts the order of magnitude of
these coefficients). Therefore, we hope that the estimate of the five-loop constant term B5 is
also rather realistic. Notice also the sign-alternating character of the results of the estimates
presented in Table 1. This feature has something in common with the expectation that the
RG-improved QED series for the Euclidean physical quantities should have sign-alternating
behaviour [29].

Taking now into account the numerical value of the RG-controllable terms in Eqs.(39), (44)
we arrive at the following estimate of the five-loop contributions of the diagrams of set (I) into
aµ

a(10)
µ (I) = BOS

5 + 8.55

= 50.1(ECH)

= 50.2(PMS). (48)

This estimate is almost non-sensitive to the concrete realization of the method of optimization.
Notice also the effect of reduction of the value of the RG-controllable five-loop contributions
presented in Refs. [19, 17]. Let us stress again that this fact is explained by necessity of the
modifications of the results used in Refs. [19, 17] for the constant term BOS

4 derived in Ref.[22].
These modifications come from two ingredients. First, it is necessary to use the corrected
expressions obtained in Refs. [17, 23] of certain four-loop graphs contributing to aµ and second
to add to the values of BOS

4 cited in Ref. [22] the constant terms due to the four-loop graphs
typical of ae but with a substitution of the electron vertex and internal electon loops to the
muon ones. As is known from the results of Ref. [30] the addition to the considerations of
Ref. [19] of the diagrams with the internal muon loops leads to strong cancellations. The
comparison of the RG-controllable expressions of Eq.(48) with the similar one derived in Refs.
[19, 17] indicates the same pattern.

Let us now discuss the applications of the outlined procedure for the estimates of the five-
loop contributions of the diagrams with the light-by-light scattering subgraphs of Fig.(2). The
special feature of the application of the re-expansion procedure to the diagrams of set (II) is that
the corresponding terms Bi depend from the ln(x)-terms non-controllable by the RG method.

The most precise value of the coefficient d
(II)
0 = B1 = 20.94792... is known from the results of

the analytical calculations of Ref. [28]. The numerical result for the sum of the corresponding
four-loop graphs reads [22]

d
(II)
0 d

(II)
1 = 116.7. (49)
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Using now Eqs. (28), (29) we arrive at the following numerical estimate of the sum of the
corresponding five-loop graphs

a(10)
µ (II) = Ω

(3)
2 = 520.8(ECH)

= 525.2(PMS) (50)

which includes the contribution of both RG-controllable and RG-non-controllable ln(x)-terms.

The estimates of Eqs.(50), (48) should be compared with the one given in Ref. [22]

a(10)
µ = 570(140) (51)

where the central value comes from the exact calculation of the contributions of the diagrams
of the set of the light-by-light-type diagrams with two one-loop electron loops inserted into the
internal photon lines (see Fig.3 ) and the error bar ±140 stands for the estimate of other con-
tributions (mainly RG-controllable ones). Our estimate of Eq. (50) is in very good agreement
with the central value of the estimate of Eq. (51), while the estimate of Eq.(48) lies within the
range of the careful estimate ±140 of other contributions.

Note, however, that our total estimate of the considered tenth-order terms

a(10)
µ = 570.9(ECH)

= 575.4(PMS). (52)

also includes the contribution of the tenth-order diagrams depicted in Fig.4 and not included in
the estimate of Eq. (51). These diagrams are formed by the insertion of the two-loop electron
loop into the internal photon line of the lower light-by-light-type diagram. The contribution
of this set of tenth-order diagrams was estimated in Ref. [31]. In order to understand the
uncertainties of this estimate better it is useful to write down a RG-relation analogous to Eqs.
(43) for this set of diagrams separately. Notice, that this contribution should be proportional
to the two-loop coefficient of the β-function (which is determined by the graphs inserted into
the internal photon line). Using this observation we arrive at the following relation

a(10)
µ (Fig.4) = B3(Fig.4) + 6B1β1 ln(x). (53)

The main contribution to the estimate of Ref. [31] comes from the ln(x)-term. Indeed, it has
the following numerical value 6B1β1 ln(x) = 167.47. This expression should be compared with
the estimate a(10)

µ (Fig.4) = 176 ± 35 given in Ref. [31]. One can see that this estimate is
relevant to the RG-controllable contribution only. However, from the re-expansion procedure
we can see that the contributions non-controllable by the RG-methods might be non-negligible
(see Eg. (48)) and might affect the final numerical value of the diagrams belonging to this set.
In order to study this guess in detail it is of interest to calculate the diagrams of Fig.4 explicitly.
This calculational project is rather realistic [32].

It is also interesting to understand deeper the uncertainties due to other diagrams which are
included neither in the “optimized” estimates of Eqs. (48), (50) nor in the original estimates
of Ref. [22]. These diagrams, depicted in Fig. 5, form a new class of diagrams, which cannot
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be touched by the RG-inspired analysis. Indeed, one can hardly expect that any resummation
procedures dealing with light-by-light-type graphs with three internal photon lines will be
able to give the estimate of the light-by-light-type graph with five internal photon lines. The
expressions for the ln(x)-terms the non-controllable by the RG-method for this type of graphs
can be read from the considerations of Refs. [33]. The result was used in Ref. [31] where the
following estimate of the diagrams of Fig.5 was presented

a(10)
µ (Fig.4) = 185 ± 85. (54)

Combining our estimates of Eq.(52) with the ones of Eq.(54) we get the final result of appli-
cations of the re-expansion procedure supplemented by the estimates of the diagrams of new
structure which are non-touched by this method

a(10)
µ ≈ 700. (55)

Let us stress again that the new ingredient of our analysis, which distinguishes it from
previous applications of the re-expansion procedures in QED [1, 9, 10], is the separation of the
considered initial diagrams to two classes, one of which consists of the diagrams, relevant to
the effects of “new physics”, discussed in more detail in Refs. [34, 33]. This procedure finds its
support in the theoretical considerations of Ref.[18].

Moreover, we checked that in spite of the good agreement of the application of the re-
expansion procedure to the non-separated sixth-order expressions for aµ with results of the
eighth-order calculations [9], the straightforward application of Eq.(13) to the non-separated
eighth-order approximation of Eq. (32) results in the non-confortably large tenth-order estimate
a(10)

µ ≈ 2160. It is possible to understand that the reason of the success of the application of
the re-expansion procedure to the non-separated sixth-order approximation is connected with
the fact that the use of Eq.(12) (and more definitely its last term) gives for the eight-order
light-by-light-type term the following estimate a(8)

µ (γγ) = 3d0d1d2(γγ) = 6a(4)
µ a(6)

µ (γγ) which is
known to be in good agreement with the results of direct numerical calculations [22]. However,
at the next level of perturbation theory the expression for the correction term Ω4 of Eq.(13)
has a more complicated structure and thus the resulting non-separated estimates turn out to
be non-confortably large. Moreover, we consider the satisfactory agreement of the results of
separated estimates with the estimates given in Ref. [22] as an argument in favour of treating
the diagrams with the electron-loop light-by-light scattering graphs separately.

Another interesting question is connected with the problem of the comparison of our es-
timates with the results of the recent applications of the Padé resummation technique to the
perturbative series for aµ [35] and aµ − ae [35, 36]. It should be stressed that in their analysis
the authors of Refs. [35, 36] did not consider the light-by-light scattering graphs separately.
Note also that the coefficients of the corresponding Padé approximants depend from the ln(x)-
terms. In spite of the fact that our results for aµ are in qualitative agreement with the results
of the applications of the Padé resummation method [35, 36] it is interesting to try to under-
stand the predictive abilities of the Padé resummation methods better. Clearly, this problem
is connected with the necessity of more detailed understanding of the relations of the Padé
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results to the ones obtained using the RG-inspired analysis. Note, that the Padé resummation
methods can face the problem in reproducing the structure of the RG-controlable ln(x)-terms.
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Appendix

Using Eq.(14) it is possible to derive the six-loop RG-controllable contributions to the
diagrams of set (I):

d
(I)
0 d

(I)
5 = B6 + C6 ln(x) + D6 ln2(x) + E6 ln3(x) + F6 ln4(x) + G6 ln5(x). (56)

The expressions for the logarithmic coefficients are

C6 = 10β0B5 + 8β1B4 + 6β2B3 + 4β3B2 + 2β4B1

D6 = 40β2
0B4 + 54β0β1B3 + 16β2

1B2 + 32β0β2B2 + 14β1β2B1 + 14β0β3B1

E6 = 80β3
0B3 +

376

3
β2

0β1B2 +
140

3
β0β

2
1B1 + 48β2

0β2B1

F6 = 80β4
0B2 +

308

3
β3

0β1B1

G6 = 32β5
0B1. (57)

However, in order to use these expressions in concrete considerations it is necessary to fix
somehow the value of the five-loop coefficient β4 of the QED β-function in the OS scheme.
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