10 research outputs found

    ATOMS : ALMA Three-millimeter Observations of Massive Star-forming regions - IX. A pilot study towards IRDC G034.43+00.24 on multi-scale structures and gas kinematics

    Get PDF
    We present a comprehensive study of the gas kinematics associated with density structures at different spatial scales in the filamentary infrared dark cloud, G034.43+00.24 (G34). This study makes use of the (HCO+)-C-13 (1-0) molecular line data from the ALMA Three-millimeter Observations of Massive Star-forming regions (ATOMS) survey, which has spatial and velocity resolution of similar to 0.04 pc and 0.2 km s(-1), respectively. Several tens of dendrogram structures have been extracted in the position-position-velocity space of (HCO+)-C-13, which include 21 small-scale leaves and 20 larger-scale branches. Overall, their gas motions are supersonic but they exhibit the interesting behaviour where leaves tend to be less dynamically supersonic than the branches. For the larger scale, branch structures, the observed velocity-size relation (i.e. velocity variation/dispersion versus size) are seen to follow the Larson scaling exponent while the smaller-scale, leaf structures show a systematic deviation and display a steeper slope. We argue that the origin of the observed kinematics of the branch structures is likely to be a combination of turbulence and gravity-driven ordered gas flows. In comparison, gravity-driven chaotic gas motion is likely at the level of small-scale leaf structures. The results presented in our previous paper and this current follow-up study suggest that the main driving mechanism for mass accretion/inflow observed in G34 varies at different spatial scales. We therefore conclude that a scale-dependent combined effect of turbulence and gravity is essential to explain the star-formation processes in G34.Peer reviewe

    H I filaments as potential compass needles? Comparing the magnetic field structure of the Small Magellanic Cloud to the orientation of GASKAP-H I filaments

    Get PDF
    High-spatial-resolution H i observations have led to the realization that the nearby (within few hundreds of parsecs) Galactic atomic filamentary structures are aligned with the ambient magnetic field. Enabled by the high-quality data from the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope for the Galactic ASKAP H i survey, we investigate the potential magnetic alignment of the  ⁣10pc\gtrsim\!{10}\, {\rm pc}-scale H i filaments in the Small Magellanic Cloud (SMC). Using the Rolling Hough Transform technique that automatically identifies filamentary structures, combined with our newly devised ray-tracing algorithm that compares the H i and starlight polarization data, we find that the H i filaments in the north-eastern end of the SMC main body (‘Bar’ region) and the transition area between the main body and the tidal feature (‘Wing’ region) appear preferentially aligned with the magnetic field traced by starlight polarization. Meanwhile, the remaining SMC volume lacks starlight polarization data of sufficient quality to draw any conclusions. This suggests for the first time that filamentary H i structures can be magnetically aligned across a large spatial volume ( ⁣kpc\gtrsim\!{\rm kpc}) outside of the Milky Way. In addition, we generate maps of the preferred orientation of H i filaments throughout the entire SMC, revealing the highly complex gaseous structures of the galaxy likely shaped by a combination of the intrinsic internal gas dynamics, tidal interactions, and star-formation feedback processes. These maps can further be compared with future measurements of the magnetic structures in other regions of the SMC

    Le Forum, Vol. 40 No. 2

    Get PDF
    https://digitalcommons.library.umaine.edu/francoamericain_forum/1087/thumbnail.jp

    Planck 2018 results. XII. Galactic astrophysics using polarized dust emission

    Get PDF
    We present 353 GHz full-sky maps of the polarization fraction p, angle \u3c8, and dispersion of angles S of Galactic dust thermal emission produced from the 2018 release of Planck data. We confirm that the mean and maximum of p decrease with increasing NH. The uncertainty on the maximum polarization fraction, pmax=22.0% at 80 arcmin resolution, is dominated by the uncertainty on the zero level in total intensity. The observed inverse behaviour between p and S is interpreted with models of the polarized sky that include effects from only the topology of the turbulent Galactic magnetic field. Thus, the statistical properties of p, \u3c8, and S mostly reflect the structure of the magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map S 7p, looking for residual trends. While p decreases by a factor of 3--4 between NH=1020 cm 122 and NH=2 71022 cm 122, S 7p decreases by only about 25%, a systematic trend observed in both the diffuse ISM and molecular clouds. Second, we find no systematic trend of S 7p with the dust temperature, even though in the diffuse ISM lines of sight with high p and low S tend to have colder dust. We also compare Planck data with starlight polarization in the visible at high latitudes. The agreement in polarization angles is remarkable. Two polarization emission-to-extinction ratios that characterize dust optical properties depend only weakly on NH and converge towards the values previously determined for translucent lines of sight. We determine an upper limit for the polarization fraction in extinction of 13%, compatible with the pmax observed in emission. These results provide strong constraints for models of Galactic dust in diffuse gas

    Planck intermediate results. III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    No full text
    none186We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal DA2 Y500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an MWL - DA2 Y500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~ 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations. Appendices are available in electronic form at <A href="http://www.aanda.org">http://www.aanda.orgP. Collaboration;P. A. R.;N. Aghanim;M. Arnaud;M. Ashdown;F. Atrio-Barandela;J. Aumont;C. Baccigalupi;A. Balbi;A. J. Banday;R. B. Barreiro;J. G. Bartlett;E. Battaner;R. Battye;K. Benabed;J. Bernard;M. Bersanelli;R. Bhatia;I. Bikmaev;H. B�hringer;A. Bonaldi;J. R. Bond;S. Borgani;J. Borrill;F. R. Bouchet;H. Bourdin;M. L. Brown;M. Bucher;R. Burenin;C. Burigana;R. C. Butler;P. Cabella;J. Cardoso;P. Carvalho;A. Chamballu;L. Chiang;G. Chon;D. L. Clements;S. Colafrancesco;A. Coulais;F. Cuttaia;A. D. Silva;H. Dahle;R. J. Davis;P. d. Bernardis;G. d. Gasperis;J. Delabrouille;J. D�mocl�s;F. D�sert;J. M. Diego;K. Dolag;H. Dole;S. Donzelli;O. Dor�;M. Douspis;X. Dupac;G. Efstathiou;T. A. En�lin;H. K. Eriksen;F. Finelli;I. Flores-Cacho;O. Forni;M. Frailis;E. Franceschi;M. Frommert;S. Galeotta;K. Ganga;R. T. G�nova-Santos;M. Giard;Y. Giraud-H�raud;J. Gonz�lez-Nuevo;K. M. G�rski;A. Gregorio;A. Gruppuso;F. K. Hansen;D. Harrison;C. Hern�ndez-Monteagudo;D. Herranz;S. R. Hildebrandt;E. Hivon;M. Hobson;W. A. Holmes;K. M. Huffenberger;G. Hurier;T. Jagemann;M. Juvela;E. Keih�nen;I. Khamitov;R. Kneissl;J. Knoche;M. Kunz;H. Kurki-Suonio;G. Lagache;J. Lamarre;A. Lasenby;C. R. Lawrence;M. L. Jeune;S. Leach;R. Leonardi;A. Liddle;P. B. Lilje;M. Linden-V�rnle;M. L�pez-Caniego;G. Luzzi;J. F. Mac�as-P�rez;D. Maino;N. Mandolesi;M. Maris;F. Marleau;D. J. Marshall;E. Mart�nez-Gonz�lez;S. Masi;S. Matarrese;F. Matthai;P. Mazzotta;P. R. Meinhold;A. Melchiorri;J. Melin;L. Mendes;S. Mitra;M. Miville-Desch�nes;L. Montier;G. Morgante;D. Munshi;P. Natoli;H. U. N�rgaard-Nielsen;F. Noviello;S. Osborne;F. Pajot;D. Paoletti;B. Partridge;T. J. Pearson;O. Perdereau;F. Perrotta;F. Piacentini;M. Piat;E. Pierpaoli;R. Piffaretti;P. Platania;E. Pointecouteau;G. Polenta;N. Ponthieu;L. Popa;T. Poutanen;G. W. Pratt;S. Prunet;J. Puget;J. P. Rachen;R. Rebolo;M. Reinecke;M. Remazeilles;C. Renault;S. Ricciardi;I. Ristorcelli;G. Rocha;C. Rosset;M. Rossetti;J. A. Rubi�o-Mart�n;B. Rusholme;M. Sandri;G. Savini;D. Scott;J. Starck;F. Stivoli;V. Stolyarov;R. Sudiwala;R. Sunyaev;D. Sutton;A. Suur-Uski;J. Sygnet;J. A. Tauber;L. Terenzi;L. Toffolatti;M. Tomasi;M. Tristram;L. Valenziano;B. V. Tent;P. Vielva;F. Villa;N. Vittorio;B. D. Wandelt;J. Weller;S. D. M.;D. Yvon;A. Zacchei;A. ZoncaP., Collaboration; P. A., R.; N., Aghanim; M., Arnaud; M., Ashdown; F., Atrio Barandela; J., Aumont; C., Baccigalupi; A., Balbi; A. J., Banday; R. B., Barreiro; J. G., Bartlett; E., Battaner; R., Battye; K., Benabed; J., Bernard; M., Bersanelli; R., Bhatia; I., Bikmaev; H., B�hringer; A., Bonaldi; J. R., Bond; S., Borgani; J., Borrill; F. R., Bouchet; H., Bourdin; M. L., Brown; M., Bucher; R., Burenin; C., Burigana; R. C., Butler; P., Cabella; J., Cardoso; P., Carvalho; A., Chamballu; L., Chiang; G., Chon; D. L., Clements; S., Colafrancesco; A., Coulais; F., Cuttaia; A. D., Silva; H., Dahle; R. J., Davis; P. d., Bernardis; G. d., Gasperis; J., Delabrouille; J., D�mocl�s; F., D�sert; J. M., Diego; K., Dolag; H., Dole; S., Donzelli; O., Dor�; M., Douspis; X., Dupac; G., Efstathiou; T. A., En�lin; H. K., Eriksen; F., Finelli; I., Flores Cacho; O., Forni; M., Frailis; E., Franceschi; M., Frommert; S., Galeotta; K., Ganga; R. T., G�nova Santos; M., Giard; Y., Giraud H�raud; J., Gonz�lez Nuevo; K. M., G�rski; A., Gregorio; A., Gruppuso; F. K., Hansen; D., Harrison; C., Hern�ndez Monteagudo; D., Herranz; S. R., Hildebrandt; E., Hivon; M., Hobson; W. A., Holmes; K. M., Huffenberger; G., Hurier; T., Jagemann; M., Juvela; E., Keih�nen; I., Khamitov; R., Kneissl; J., Knoche; M., Kunz; H., Kurki Suonio; G., Lagache; J., Lamarre; A., Lasenby; C. R., Lawrence; M. L., Jeune; S., Leach; R., Leonardi; A., Liddle; P. B., Lilje; M., Linden V�rnle; M., L�pez Caniego; G., Luzzi; J. F., Mac�as P�rez; D., Maino; N., Mandolesi; M., Maris; F., Marleau; D. J., Marshall; E., Mart�nez Gonz�lez; S., Masi; S., Matarrese; F., Matthai; P., Mazzotta; P. R., Meinhold; A., Melchiorri; J., Melin; L., Mendes; S., Mitra; M., Miville Desch�nes; L., Montier; G., Morgante; D., Munshi; P., Natoli; H. U., N�rgaard Nielsen; F., Noviello; S., Osborne; F., Pajot; D., Paoletti; B., Partridge; T. J., Pearson; O., Perdereau; F., Perrotta; F., Piacentini; M., Piat; E., Pierpaoli; R., Piffaretti; P., Platania; E., Pointecouteau; G., Polenta; N., Ponthieu; L., Popa; T., Poutanen; G. W., Pratt; S., Prunet; J., Puget; J. P., Rachen; R., Rebolo; M., Reinecke; M., Remazeilles; C., Renault; S., Ricciardi; I., Ristorcelli; G., Rocha; C., Rosset; M., Rossetti; J. A., Rubi�o Mart�n; B., Rusholme; M., Sandri; G., Savini; D., Scott; J., Starck; F., Stivoli; V., Stolyarov; R., Sudiwala; R., Sunyaev; D., Sutton; A., Suur Uski; J., Sygnet; J. A., Tauber; Terenzi, Luca; L., Toffolatti; M., Tomasi; M., Tristram; L., Valenziano; B. V., Tent; P., Vielva; F., Villa; N., Vittorio; B. D., Wandelt; J., Weller; S. D., M.; D., Yvon; A., Zacchei; A., Zonc

    Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts

    No full text
    none255We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev-Zeldovich (SZ) effect, and the sub-sample used here has a signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the completeness of the sample and our construction of a likelihood analysis. Using a relation between mass M and SZ signal Y calibrated to X-ray measurements, we derive constraints on the power spectrum amplitude sigma8 and matter density parameter Omegam in a flat LambdaCDM model. We test the robustness of our estimates and find that possible biases in the Y-M relation and the halo mass function are larger than the statistical uncertainties from the cluster sample. Assuming the X-ray determined mass to be biased low relative to the true mass by between zero and 30%, motivated by comparison of the observed mass scaling relations to those from a set of numerical simulations, we find that sigma8 = 0.75 ??? 0.03, Omegam = 0.29 ??? 0.02, and sigma8(Omegam/ 0.27)0.3 = 0.764 ??? 0.025. The value of sigma8 is degenerate with the mass bias; if the latter is fixed to a value of 20% (the central value from numerical simulations) we find sigma8(Omegam/0.27)0.3 = 0.78 ??? 0.01 and a tighter one-dimensional range sigma8 = 0.77 ??? 0.02. We find that the larger values of sigma8 and Omegam preferred by Planck's measurements of the primary CMB anisotropies can be accommodated by a mass bias of about 40%. Alternatively, consistency with the primary CMB constraints can be achieved by inclusion of processes that suppress power on small scales relative to the LambdaCDM model, such as a component of massive neutrinos. We place our results in the context of other determinations of cosmologicalparameters, and discuss issues that need to be resolved in order to make further progress in this field.P. Collaboration;P. A. R.;N. Aghanim;C. Armitage-Caplan;M. Arnaud;M. Ashdown;F. Atrio-Barandela;J. Aumont;C. Baccigalupi;A. J. Banday;R. B. Barreiro;R. Barrena;J. G. Bartlett;E. Battaner;R. Battye;K. Benabed;A. Beno�t;A. Benoit-L�vy;J. Bernard;M. Bersanelli;P. Bielewicz;I. Bikmaev;A. Blanchard;J. Bobin;J. J. Bock;H. B�hringer;A. Bonaldi;J. R. Bond;J. Borrill;F. R. Bouchet;H. Bourdin;M. Bridges;M. L. Brown;M. Bucher;R. Burenin;C. Burigana;R. C. Butler;J. Cardoso;P. Carvalho;A. Catalano;A. Challinor;A. Chamballu;R. Chary;L. Chiang;H. C. Chiang;G. Chon;P. R. Christensen;S. Church;D. L. Clements;S. Colombi;L. P. L.;F. Couchot;A. Coulais;B. P. Crill;A. Curto;F. Cuttaia;A. D. Silva;H. Dahle;L. Danese;R. D. Davies;R. J. Davis;P. d. Bernardis;A. d. Rosa;G. d. Zotti;J. Delabrouille;J. Delouis;J. D�mocl�s;F. D�sert;C. Dickinson;J. M. Diego;K. Dolag;H. Dole;S. Donzelli;O. Dor�;M. Douspis;X. Dupac;G. Efstathiou;T. A. En�lin;H. K. Eriksen;F. Finelli;I. Flores-Cacho;O. Forni;M. Frailis;E. Franceschi;S. Fromenteau;S. Galeotta;K. Ganga;R. T. G�nova-Santos;M. Giard;G. Giardino;Y. Giraud-H�raud;J. Gonz�lez-Nuevo;K. M. G�rski;S. Gratton;A. Gregorio;A. Gruppuso;F. K. Hansen;D. Hanson;D. Harrison;S. Henrot-Versill�;C. Hern�ndez-Monteagudo;D. Herranz;S. R. Hildebrandt;E. Hivon;M. Hobson;W. A. Holmes;A. Hornstrup;W. Hovest;K. M. Huffenberger;G. Hurier;T. R. Jaffe;A. H. Jaffe;W. C. Jones;M. Juvela;E. Keih�nen;R. Keskitalo;I. Khamitov;T. S. Kisner;R. Kneissl;J. Knoche;L. Knox;M. Kunz;H. Kurki-Suonio;G. Lagache;A. L�hteenm�ki;J. Lamarre;A. Lasenby;R. J. Laureijs;C. R. Lawrence;J. P. Leahy;R. Leonardi;J. Le�n-Tavares;J. Lesgourgues;A. Liddle;M. Liguori;P. B. Lilje;M. Linden-V�rnle;M. L�pez-Caniego;P. M. Lubin;J. F. Mac�as-P�rez;B. Maffei;D. Maino;N. Mandolesi;A. Marcos-Caballero;M. Maris;D. J. Marshall;P. G. Martin;E. Mart�nez-Gonz�lez;S. Masi;S. Matarrese;F. Matthai;P. Mazzotta;P. R. Meinhold;A. Melchiorri;J. Melin;L. Mendes;A. Mennella;M. Migliaccio;S. Mitra;M. Miville-Desch�nes;A. Moneti;L. Montier;G. Morgante;D. Mortlock;A. Moss;D. Munshi;P. Naselsky;F. Nati;P. Natoli;C. B. Netterfield;H. U. N�rgaard-Nielsen;F. Noviello;D. Novikov;I. Novikov;S. Osborne;C. A. Oxborrow;F. Paci;L. Pagano;F. Pajot;D. Paoletti;B. Partridge;F. Pasian;G. Patanchon;O. Perdereau;L. Perotto;F. Perrotta;F. Piacentini;M. Piat;E. Pierpaoli;D. Pietrobon;S. Plaszczynski;E. Pointecouteau;G. Polenta;N. Ponthieu;L. Popa;T. Poutanen;G. W. Pratt;G. Pr�zeau;S. Prunet;J. Puget;J. P. Rachen;R. Rebolo;M. Reinecke;M. Remazeilles;C. Renault;S. Ricciardi;T. Riller;I. Ristorcelli;G. Rocha;M. Roman;C. Rosset;G. Roudier;M. Rowan-Robinson;J. A. Rubi�o-Mart�n;B. Rusholme;M. Sandri;D. Santos;G. Savini;D. Scott;M. D. Seiffert;E. P. S.;L. D. Spencer;J. Starck;V. Stolyarov;R. Stompor;R. Sudiwala;R. Sunyaev;F. Sureau;D. Sutton;A. Suur-Uski;J. Sygnet;J. A. Tauber;D. Tavagnacco;L. Terenzi;L. Toffolatti;M. Tomasi;M. Tristram;M. Tucci;J. Tuovinen;M. T�rler;G. Umana;L. Valenziano;J. Valiviita;B. V. Tent;P. Vielva;F. Villa;N. Vittorio;L. A. Wade;B. D. Wandelt;J. Weller;M. White;S. D. M.;D. Yvon;A. Zacchei;A. ZoncaP., Collaboration; P. A., R.; N., Aghanim; C., Armitage Caplan; M., Arnaud; M., Ashdown; F., Atrio Barandela; J., Aumont; C., Baccigalupi; A. J., Banday; R. B., Barreiro; R., Barrena; J. G., Bartlett; E., Battaner; R., Battye; K., Benabed; A., Beno�t; A., Benoit L�vy; J., Bernard; M., Bersanelli; P., Bielewicz; I., Bikmaev; A., Blanchard; J., Bobin; J. J., Bock; H., B�hringer; A., Bonaldi; J. R., Bond; J., Borrill; F. R., Bouchet; H., Bourdin; M., Bridges; M. L., Brown; M., Bucher; R., Burenin; C., Burigana; R. C., Butler; J., Cardoso; P., Carvalho; A., Catalano; A., Challinor; A., Chamballu; R., Chary; L., Chiang; H. C., Chiang; G., Chon; P. R., Christensen; S., Church; D. L., Clements; S., Colombi; L. P., L.; F., Couchot; A., Coulais; B. P., Crill; A., Curto; F., Cuttaia; A. D., Silva; H., Dahle; L., Danese; R. D., Davies; R. J., Davis; P. d., Bernardis; A. d., Rosa; G. d., Zotti; J., Delabrouille; J., Delouis; J., D�mocl�s; F., D�sert; C., Dickinson; J. M., Diego; K., Dolag; H., Dole; S., Donzelli; O., Dor�; M., Douspis; X., Dupac; G., Efstathiou; T. A., En�lin; H. K., Eriksen; F., Finelli; I., Flores Cacho; O., Forni; M., Frailis; E., Franceschi; S., Fromenteau; S., Galeotta; K., Ganga; R. T., G�nova Santos; M., Giard; G., Giardino; Y., Giraud H�raud; J., Gonz�lez Nuevo; K. M., G�rski; S., Gratton; A., Gregorio; A., Gruppuso; F. K., Hansen; D., Hanson; D., Harrison; S., Henrot Versill�; C., Hern�ndez Monteagudo; D., Herranz; S. R., Hildebrandt; E., Hivon; M., Hobson; W. A., Holmes; A., Hornstrup; W., Hovest; K. M., Huffenberger; G., Hurier; T. R., Jaffe; A. H., Jaffe; W. C., Jones; M., Juvela; E., Keih�nen; R., Keskitalo; I., Khamitov; T. S., Kisner; R., Kneissl; J., Knoche; L., Knox; M., Kunz; H., Kurki Suonio; G., Lagache; A., L�hteenm�ki; J., Lamarre; A., Lasenby; R. J., Laureijs; C. R., Lawrence; J. P., Leahy; R., Leonardi; J., Le�n Tavares; J., Lesgourgues; A., Liddle; M., Liguori; P. B., Lilje; M., Linden V�rnle; M., L�pez Caniego; P. M., Lubin; J. F., Mac�as P�rez; B., Maffei; D., Maino; N., Mandolesi; A., Marcos Caballero; M., Maris; D. J., Marshall; P. G., Martin; E., Mart�nez Gonz�lez; S., Masi; S., Matarrese; F., Matthai; P., Mazzotta; P. R., Meinhold; A., Melchiorri; J., Melin; L., Mendes; A., Mennella; M., Migliaccio; S., Mitra; M., Miville Desch�nes; A., Moneti; L., Montier; G., Morgante; D., Mortlock; A., Moss; D., Munshi; P., Naselsky; F., Nati; P., Natoli; C. B., Netterfield; H. U., N�rgaard Nielsen; F., Noviello; D., Novikov; I., Novikov; S., Osborne; C. A., Oxborrow; F., Paci; L., Pagano; F., Pajot; D., Paoletti; B., Partridge; F., Pasian; G., Patanchon; O., Perdereau; L., Perotto; F., Perrotta; F., Piacentini; M., Piat; E., Pierpaoli; D., Pietrobon; S., Plaszczynski; E., Pointecouteau; G., Polenta; N., Ponthieu; L., Popa; T., Poutanen; G. W., Pratt; G., Pr�zeau; S., Prunet; J., Puget; J. P., Rachen; R., Rebolo; M., Reinecke; M., Remazeilles; C., Renault; S., Ricciardi; T., Riller; I., Ristorcelli; G., Rocha; M., Roman; C., Rosset; G., Roudier; M., Rowan Robinson; J. A., Rubi�o Mart�n; B., Rusholme; M., Sandri; D., Santos; G., Savini; D., Scott; M. D., Seiffert; E. P., S.; L. D., Spencer; J., Starck; V., Stolyarov; R., Stompor; R., Sudiwala; R., Sunyaev; F., Sureau; D., Sutton; A., Suur Uski; J., Sygnet; J. A., Tauber; D., Tavagnacco; Terenzi, Luca; L., Toffolatti; M., Tomasi; M., Tristram; M., Tucci; J., Tuovinen; M., T�rler; G., Umana; L., Valenziano; J., Valiviita; B. V., Tent; P., Vielva; F., Villa; N., Vittorio; L. A., Wade; B. D., Wandelt; J., Weller; M., White; S. D., M.; D., Yvon; A., Zacchei; A., Zonc

    Planck 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation

    Get PDF
    We describe the detection, interpretation, and removal of the signal resulting from interactions of high energy particles with the Planck High Frequency Instrument (HFI). There are two types of interactions: heating of the 0.1 K bolometer plate; and glitches in each detector time stream. The transientresponses to detector glitch shapes are not simple single-pole exponential decays and fall into three families. The glitch shape for each family has been characterized empirically in flight data and these shapes have been used to remove glitches from the detector time streams. The spectrum of the count rate per unit energy is computed for each family and a correspondence is made to the location on the detector of the particle hit. Most of the detected glitches are from Galactic protons incident on the die frame supporting the micro-machined bolometric detectors. In the Planck orbit at L2, the particle flux is around 5 cm-2 s-1 and is dominated by protons incident on the spacecraft with energy >39 MeV, at a rate of typically one event per second per detector. Different categories of glitches have different signatures in the time stream. Two of the glitch types have a low amplitude component that decays over nearly 1 s. This component produces excess noise if not properly removed from the time-ordered data. We have used a glitch detection and subtraction method based on the joint fit of population templates. The application of this novel glitch subtraction method removes excess noise from the time streams. Using realistic simulations, we find that this method does not introduce signal bias into the Planck data. Reproduced with permission from Astronomy & Astrophysics, © ESO 201

    Planck 2013 results. XIX. The integrated Sachs-Wolfe effect

    Get PDF
    Based on cosmic microwave background (CMB) maps from the 2013 Planck Mission data release, this paper presents the detection of the integrated Sachs-Wolfe (ISW) effect, that is, the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to 4sigma, depending on which method is used. We investigated three separate approaches, which essentially cover all previous studies, and also break new ground. (i) We correlated the CMB with the Planck reconstructed gravitational lensing potential (for the first time). This detection was made using the lensing-induced bispectrum between the low-l and high-l temperature anisotropies; the correlation between lensing and the ISW effect has a significance close to 2.5sigma. (ii) We cross-correlated with tracers of large-scale structure, which yielded a significance of about 3sigma, based on a combination of radio (NVSS) and optical (SDSS) data. (iii) We used aperture photometry on stacked CMB fields at the locations of known large-scale structures, which yielded and confirms a 4sigma signal, over a broader spectral range, when using a previously explored catalogue, but shows strong discrepancies in amplitude and scale when compared with expectations. More recent catalogues give more moderate results that range from negligible to 2.5sigma at most, but have a more consistent scale and amplitude, the latter being still slightly higher than what is expected from numerical simulations within LambdaCMD. Where they can be compared, these measurements are compatible with previous work using data from WMAP, where these scales have been mapped to the limits of cosmic variance. Planck's broader frequency coverage allows for better foreground cleaning and confirms that the signal is achromatic, which makes it preferable for ISW detection. As a final step we used tracers of large-scale structure to filter the CMB data, from which we present maps of the ISW temperature perturbation. These results provide complementary and independent evidence for the existence of a dark energy component that governs the currently accelerated expansion of the Universe
    corecore