616 research outputs found
Geoeffectiveness and efficiency of CIR, Sheath and ICME in generation of magnetic storms
We investigate relative role of various types of solar wind streams in
generation of magnetic storms. On the basis of the OMNI data of interplanetary
measurements for the period of 1976-2000 we analyze 798 geomagnetic storms with
Dst < -50 nT and their interplanetary sources: corotating interaction regions
(CIR), interplanetary CME (ICME) including magnetic clouds (MC) and Ejecta and
compression regions Sheath before both types of ICME. For various types of
solar wind we study following relative characteristics: occurrence rate; mass,
momentum, energy and magnetic fluxes; probability of generation of magnetic
storm (geoeffectiveness) and efficiency of process of this generation. Obtained
results show that despite magnetic clouds have lower occurrence rate and lower
efficiency than CIR and Sheath they play an essential role in generation of
magnetic storms due to higher geoeffectiveness of storm generation (i.e higher
probability to contain large and long-term southward IMF Bz component).Comment: 23 pages, 4 figures, 3 tables, submitted to JGR special issue
"Response of Geospace to High-Speed Streams
Recovery phase of magnetic storms induced by different interplanetary drivers
Statistical analysis of Dst behaviour during recovery phase of magnetic
storms induced by different types of interplanetary drivers is made on the
basis of OMNI data in period 1976-2000. We study storms induced by ICMEs
(including magnetic clouds (MC) and Ejecta) and both types of compressed
regions: corotating interaction regions (CIR) and Sheaths. The shortest,
moderate and longest durations of recovery phase are observed in ICME-, CIR-,
and Sheath-induced storms, respectively. Recovery phases of strong ( nT) magnetic storms are well approximated by hyperbolic functions
with constant times for all types of drivers
while for moderate ( nT) storms profile can not
be approximated by hyperbolic function with constant because
hyperbolic time increases with increasing time of recovery phase.
Relation between duration and value for storms induced by ICME and
Sheath has 2 parts: and duration correlate at small durations while
they anticorrelate at large durations.Comment: 18 pages, 4 figures, 2 tables, submitted to JGR special issue
"Response of Geospace to High-Speed Streams
Heat transfer intensity of pulsating gas flows in the exhaust system elements of a piston engine
Internal combustion engines are the most common sources of energy among heat engines. Therefore, the improvement of their design and workflow is an urgent task in the development of world energy. Thermal-mechanical perfection of the exhaust system has a significant impact on the technical and economic performance of piston engines. The article presents the results of experimental studies of gas-dynamics and heat exchange of pulsating gas flows in the exhaust system of a piston engine. Studies were carried out on a full-scale model of a single-cylinder engine. The article describes the instrument-measuring base and methods of experiments. The heat transfer intensity was estimated in different elements of the exhaust system: the exhaust pipe, the channel in the cylinder head, the valve assembly. Heat transfer studies were carried out taking into account the gas-dynamic nonstationarity characteristic of gas exchange processes in engines. The article presents data on the influence of gas-dynamic and regime factors on the heat transfer intensity. It is shown that the restructuring of the gas flow structure in the exhaust system occurs depending on the engine crankshaft speed, this has a significant impact on the local heat transfer coefficient. It has been established that the heat transfer intensity in the valve assembly is 2-3 times lower than in other elements of the exhaust system. © The Authors, published by EDP Sciences.Russian Science Foundation, RSF: 18-79-10003The work has been supported by the Russian Science Foundation (grant No. 18-79-10003)
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
Analysis of the FGF gene family provides insights into aquatic adaptation in cetaceans
Cetacean body structure and physiology exhibit dramatic adaptations to their aquatic environment. Fibroblast growth factors (FGFs) are a family of essential factors that regulate animal development and physiology; however, their role in cetacean evolution is not clearly understood. Here, we sequenced the fin whale genome and analysed FGFs from 8 cetaceans. FGF22, a hair follicle-enriched gene, exhibited pseudogenization, indicating that the function of this gene is no longer necessary in cetaceans that have lost most of their body hair. An evolutionary analysis revealed signatures of positive selection for FGF3 and FGF11, genes related to ear and tooth development and hypoxia, respectively. We found a D203G substitution in cetacean FGF9, which was predicted to affect FGF9 homodimerization, suggesting that this gene plays a role in the acquisition of rigid flippers for efficient manoeuvring. Cetaceans utilize low bone density as a buoyancy control mechanism, but the underlying genes are not known. We found that the expression of FGF23, a gene associated with reduced bone density, is greatly increased in the cetacean liver under hypoxic conditions, thus implicating FGF23 in low bone density in cetaceans. Altogether, our results provide novel insights into the roles of FGFs in cetacean adaptation to the aquatic environment.ope
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Attenuation of doxorubicin-induced cardiotoxicity by mdivi-1: a mitochondrial division/mitophagy inhibitor
Doxorubicin is one of the most effective anti-cancer agents. However, its use is associated with adverse cardiac effects, including cardiomyopathy and progressive heart failure. Given the multiple beneficial effects of the mitochondrial division inhibitor (mdivi-1) in a variety of pathological conditions including heart failure and ischaemia and reperfusion injury, we investigated the effects of mdivi-1 on doxorubicin-induced cardiac dysfunction in naïve and stressed conditions using Langendorff perfused heart models and a model of oxidative stress was used to assess the effects of drug treatments on the mitochondrial depolarisation and hypercontracture of cardiac myocytes. Western blot analysis was used to measure the levels of p-Akt and p-Erk 1/2 and flow cytometry analysis was used to measure the levels p-Drp1 and p-p53 upon drug treatment. The HL60 leukaemia cell line was used to evaluate the effects of pharmacological inhibition of mitochondrial division on the cytotoxicity of doxorubicin in a cancer cell line. Doxorubicin caused a significant impairment of cardiac function and increased the infarct size to risk ratio in both naïve conditions and during ischaemia/reperfusion injury. Interestingly, co-treatment of doxorubicin with mdivi-1 attenuated these detrimental effects of doxorubicin. Doxorubicin also caused a reduction in the time taken to depolarisation and hypercontracture of cardiac myocytes, which were reversed with mdivi-1. Finally, doxorubicin caused a significant elevation in the levels of signalling proteins p-Akt, p-Erk 1/2, p-Drp1 and p-p53. Co-incubation of mdivi-1 with doxorubicin did not reduce the cytotoxicity of doxorubicin against HL-60 cells. These data suggest that the inhibition of mitochondrial fission protects the heart against doxorubicin-induced cardiac injury and identify mitochondrial fission as a new therapeutic target in ameliorating doxorubicin-induced cardiotoxicity without affecting its anti-cancer properties
STUDY OF GAIN FACTOR EFFECT OF ERBIUM DOPED FIBER AMPLIFIER ON NOISE FLOOR LEVEL OF FIBER-OPTIC INTERFEROMETRIC SENSOR
Subject of Research. The paper presents experimental study results of the gain factor effect of an erbium doped fiber amplifier on the noise floor level of a fiber-optic interferometric acoustic sensor. Fiber-optic sensor is based on a Michelson interferometer. The optical amplifier is located behind the compensating interferometer which induces the auxiliary phase modulation to the interference signal. The homodyne demodulation algorithm is used to recover the sensor phase signal. Method. During the experiment there were no external acoustical impacts on the sensor. The power control of optical signals from the fiber amplifier was performed. Noise signals from the sensor were written into data files under the different values of the fiber amplifier gain factor. Spectral estimations of the noise floor level of the fiber-optic interferometric sensor were performed by the averaged modified periodogram method under the different values of the fiber amplifier gain factor. Obtained results were used to define the dependence of the noise floor level of the fiber-optic interferometric sensor on the fiber amplifier gain factor. Main Results. Mean noise floor levels were equal to 64 urad/Hz0.5 at 355 Hz, 68 urad/Hz0.5 at 450 Hz and 66 urad/Hz0.5 at 500 Hz. Experimental results showed insignificant increase of the noise floor level of the fiber-optic interferometric sensor with the growth of the optical amplifier gain factor from 14.6 dB to 25.8 dB. The gain factor increase was about several percent and did not exceed inaccuracies of performed measurements. Practical Relevance. The absence of significant changes in the noise floor level of the considered fiber-optic sensor with the changing of the fiber amplifier gain factor is caused by the intensity noise suppression of the used demodulation scheme. The considered fiber amplifier might be used for the amplification of optical signals from the fiber-optic multiplexed array of fiber-optic sensors without the significant deterioration of their noise performance on condition that the homodyne demodulation algorithm with the intensity noise suppression is used
Features of thermomechanics of pulsating gas flows in intake systems with grooves in relation to turbocharged engines
Reciprocating engines (RICE) are widely used as heat engines to convert the chemical energy of fuel into mechanical work on the crankshaft. Aerodynamic and thermophysical processes in gas exchange systems significantly affect the efficiency of internal combustion RICEs. This article explores the possibility of influencing the gas dynamics and heat transfer of pulsating gas flows in the intake system by placing a channel with grooves. It is known that the presence of grooves in the channel leads to the formation of significant secondary vortices, which radically change the physical picture of the gas flow. The studies are carried out on a laboratory bench, which was a single-cylinder model of a turbocharged RICE. The system of measurements of basic physical quantities is described, taking into account their high dynamics in gas exchange systems. The experimental data processing techniques are presented. Primary data on the instantaneous values of the gas-dynamic and heat-exchange characteristics of pulsating flows are reported. It is established that the presence of a channel with grooves in the intake system leads to a decrease in the turbulence number by 40% and the intensification of heat transfer in the range of 5-50% compared with the basic intake system. A positive effect is shown in the form of an increase in engine power by 3% when using an upgraded system. © Published under licence by IOP Publishing Ltd.The work has been supported by the Russian Science Foundation (grant No. 18-79-10003)
VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions
Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways
- …
