1,177 research outputs found
Domain Dynamics of Magnetic Films with Perpendicular Anisotropy
We study the magnetic properties of nanoscale magnetic films with large
perpendicular anisotropy comparing polarization microscopy measurements on
Co_28Pt_72 alloy samples based on the magneto-optical Kerr effect with Monte
Carlo simulations of a corresponding micromagnetic model. We focus on the
understanding of the dynamics especially the temperature and field dependence
of the magnetisation reversal process. The experimental and simulational
results for hysteresis, the reversal mechanism, domain configurations during
the reversal, and the time dependence of the magnetisation are in very good
qualitative agreement. The results for the field and temperature dependence of
the domain wall velocity suggest that for thin films the hysteresis can be
described as a depinning transition of the domain walls rounded by thermal
activation for finite temperatures.Comment: 7 pages Latex, Postscript figures included, accepted for publication
in Phys.Rev.B, also availible at:
http://www.thp.Uni-Duisburg.DE/Publikationen/Publist_Us_R.htm
Stationary Properties of a Randomly Driven Ising Ferromagnet
We consider the behavior of an Ising ferromagnet obeying the Glauber dynamics
under the influence of a fast switching, random external field. Analytic
results for the stationary state are presented in mean-field approximation,
exhibiting a novel type of first order phase transition related to dynamic
freezing. Monte Carlo simulations performed on a quadratic lattice indicate
that many features of the mean field theory may survive the presence of
fluctuations.Comment: 5 pages in RevTex format, 7 eps/ps figures, send comments to
"mailto:[email protected]", submitted to PR
Cluster Radio Halos at the crossroads between astrophysics and cosmology in the SKA era
Giant Radio Halos (RH) are diffuse, Mpc-sized, synchrotron radio sources
observed in a fraction of merging galaxy clusters. The current scenario for the
origin of RHs assumes that turbulence generated during cluster mergers
re-accelerates pre-existing fossil and/or secondary electrons in the
intra-cluster-medium (ICM) to the energies necessary to produce the observed
radio emission. Moreover, more relaxed clusters could host diffuse "off state"
halos produced by secondary electrons. In this Chapter we use Monte Carlo
simulations, that combine turbulent-acceleration physics and the generation of
secondaries in the ICM, to calculate the occurrence of RHs in the Universe,
their spectral properties and connection with properties of the hosting
clusters. Predictions for SKA1 surveys are presented at low (100-300 MHz) and
mid (1-2 GHz) frequencies assuming the expected sensitivities and spatial
resolutions of SKA1. SKA1 will step into an unexplored territory allowing us to
study the formation and evolution of RHs in a totally new range of cluster
masses and redshift, allowing firm tests of the current theoretical hypothesis.
In particular, the combination of SKA1-LOW and SUR will allow the discovery of
~1000 ultrasteep- spectrum halos and to detect for the very first time "off
state" RHs. We expect that at least ~2500 giant RHs will be discovered by
SKA1-LOW surveys up to z~0.6. Remarkably these surveys will be sensitive to RHs
in a cluster mass range (down to ~10^14 solar masses) and redshifts (up to ~1)
that are unexplored by current observations. SKA1 surveys will be highly
competitive with present and future SZ-surveys in the detection of
high-redshift massive objects.Comment: 13 pages, 6 figures, to appear in proceedings of "Advancing
Astrophysics with the Square Kilometre Array" PoS(AASKA14)07
Lofar low-band antenna observations of the 3C 295 and boötes fields : Source counts and ultra-steep spectrum sources
© 2018 The American Astronomical Society. All rights reserved.We present Low Frequency Array (LOFAR) Low Band observations of the Boötes and 3C 295 fields. Our images made at 34, 46, and 62 MHz reach noise levels of 12, 8, and 5 mJy beam-1, making them the deepest images ever obtained in this frequency range. In total, we detect between 300 and 400 sources in each of these images, covering an area of 17-52 deg2. From the observations, we derive Euclidean-normalized differential source counts. The 62 MHz source counts agree with previous GMRT 153 MHz and Very Large Array 74 MHz differential source counts, scaling with a spectral index of -0.7. We find that a spectral index scaling of -0.5 is required to match up the LOFAR 34 MHz source counts. This result is also in agreement with source counts from the 38 MHz 8C survey, indicating that the average spectral index of radio sources flattens toward lower frequencies. We also find evidence for spectral flattening using the individual flux measurements of sources between 34 and 1400 MHz and by calculating the spectral index averaged over the source population. To select ultra-steep spectrum (α < -1.1) radio sources that could be associated with massive high-redshift radio galaxies, we compute spectral indices between 62 MHz, 153 MHz, and 1.4 GHz for sources in the Boötes field. We cross-correlate these radio sources with optical and infrared catalogs and fit the spectral energy distribution to obtain photometric redshifts. We find that most of these ultra-steep spectrum sources are located in the 0.7 ≲ z ≲ 2.5 range.Peer reviewe
Plant growth drives soil nitrogen cycling and N-related microbial activity through changing root traits
Relationships between plants and nitrogen-related microbes may vary with plant growth. We investigated these dynamic relationships over three months by analyzing plant functional traits (PFT), arbuscular mycorrhizal fungal (AMF) colonization, potential N mineralization (PNM), potential nitrification (PNA) and denitrification activities (PDA) in Dactylis glomerata cultures. D. glomerata recruited AMF during early growth, and thereafter maintained a constant root colonization intensity. This may have permitted high enough plant nutrient acquisition over the three months as to offset reduced soil inorganic N. PFT changed with plant age and declining soil fertility, resulting in higher allocation to root biomass and higher root C:N ratio. Additional to root AMF presence, PR' changes may have favored denitrification over mineralization through changes in soil properties, particularly increasing the quality of the labile carbon soil fraction. Other PFT changes, such as N uptake, modified the plants' ability to compete with bacterial groups involved in N cycling. (C) 2020 Elsevier Ltd and British Mycological Society. All rights reserved.Peer reviewe
Epigenetics as a mechanism driving polygenic clinical drug resistance
Aberrant methylation of CpG islands located at or near gene promoters is associated with inactivation of gene expression during tumour development. It is increasingly recognised that such epimutations may occur at a much higher frequency than gene mutation and therefore have a greater impact on selection of subpopulations of cells during tumour progression or acquisition of resistance to anticancer drugs. Although laboratory-based models of acquired resistance to anticancer agents tend to focus on specific genes or biochemical pathways, such 'one gene : one outcome' models may be an oversimplification of acquired resistance to treatment of cancer patients. Instead, clinical drug resistance may be due to changes in expression of a large number of genes that have a cumulative impact on chemosensitivity. Aberrant CpG island methylation of multiple genes occurring in a nonrandom manner during tumour development and during the acquisition of drug resistance provides a mechanism whereby expression of multiple genes could be affected simultaneously resulting in polygenic clinical drug resistance. If simultaneous epigenetic regulation of multiple genes is indeed a major driving force behind acquired resistance of patients' tumour to anticancer agents, this has important implications for biomarker studies of clinical outcome following chemotherapy and for clinical approaches designed to circumvent or modulate drug resistance
First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256
Abell 2256 is one of the best known examples of a galaxy cluster hosting
large-scale diffuse radio emission that is unrelated to individual galaxies. It
contains both a giant radio halo and a relic, as well as a number of head-tail
sources and smaller diffuse steep-spectrum radio sources. The origin of radio
halos and relics is still being debated, but over the last years it has become
clear that the presence of these radio sources is closely related to galaxy
cluster merger events. Here we present the results from the first LOFAR Low
band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our
knowledge, the image presented in this paper at 63 MHz is the deepest ever
obtained at frequencies below 100 MHz in general. Both the radio halo and the
giant relic are detected in the image at 63 MHz, and the diffuse radio emission
remains visible at frequencies as low as 20 MHz. The observations confirm the
presence of a previously claimed ultra-steep spectrum source to the west of the
cluster center with a spectral index of -2.3 \pm 0.4 between 63 and 153 MHz.
The steep spectrum suggests that this source is an old part of a head-tail
radio source in the cluster. For the radio relic we find an integrated spectral
index of -0.81 \pm 0.03, after removing the flux contribution from the other
sources. This is relatively flat which could indicate that the efficiency of
particle acceleration at the shock substantially changed in the last \sim 0.1
Gyr due to an increase of the shock Mach number. In an alternative scenario,
particles are re-accelerated by some mechanism in the downstream region of the
shock, resulting in the relatively flat integrated radio spectrum. In the radio
halo region we find indications of low-frequency spectral steepening which may
suggest that relativistic particles are accelerated in a rather inhomogeneous
turbulent region.Comment: 13 pages, 13 figures, accepted for publication in A\&A on April 12,
201
LOFAR MSSS: Flattening low-frequency radio continuum spectra of nearby galaxies
Accepted for publication in Astronomy and AstrophysicsAims. The shape of low-frequency radio continuum spectra of normal galaxies is not well understood, the key question being the role of physical processes such as thermal absorption in shaping them. In this work we take advantage of the LOFAR Multifrequency Snapshot Sky Survey (MSSS) to investigate such spectra for a large sample of nearby star-forming galaxies. Methods. Using the measured 150 MHz flux densities from the LOFAR MSSS survey and literature flux densities at various frequencies we have obtained integrated radio spectra for 106 galaxies characterised by different morphology and star formation rate. The spectra are explained through the use of a three-dimensional model of galaxy radio emission, and radiation transfer dependent on the galaxy viewing angle and absorption processes. Results. Our galaxies' spectra are generally flatter at lower compared to higher frequencies: the median spectral index α low measured between ≈ 50 MHz and 1.5 GHz is -0.57 ± 0.01 while the high-frequency one α high, calculated between 1.3 GHz and 5 GHz, is -0.77 ± 0.03. As there is no tendency for the highly inclined galaxies to have more flattened low-frequency spectra, we argue that the observed flattening is not due to thermal absorption, contradicting the suggestion of Israel & Mahoney (1990, ApJ, 352, 30). According to our modelled radio maps for M 51-like galaxies, the free-free absorption effects can be seen only below 30 MHz and in the global spectra just below 20 MHz, while in the spectra of starburst galaxies, like M 82, the flattening due to absorption is instead visible up to higher frequencies of about 150 MHz. Starbursts are however scarce in the local Universe, in accordance with the weak spectral curvature seen in the galaxies of our sample. Locally, within galactic disks, the absorption effects are distinctly visible in M 51-like galaxies as spectral flattening around 100-200 MHz in the face-on objects, and as turnovers in the edge-on ones, while in M 82-like galaxies there are strong turnovers at frequencies above 700 MHz, regardless of viewing angle. Conclusions. Our modelling of galaxy spectra suggests that the weak spectral flattening observed in the nearby galaxies studied here results principally from synchrotron spectral curvature due to cosmic ray energy losses and propagation effects. We predict much stronger effects of thermal absorption in more distant galaxies with high star formation rates. Some influence exerted by the Milky Way's foreground on the spectra of all external galaxies is also expected at very low frequencies.Peer reviewedFinal Accepted Versio
LOFAR MSSS: The Scaling Relation between AGN Cavity Power and Radio Luminosity at Low Radio Frequencies
This article has been accepted for publication in a forthcoming issue of Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.We present a new analysis of the widely used relation between cavity power and radio luminosity in clusters of galaxies with evidence for strong AGN feedback. We study the correlation at low radio frequencies using two new surveys - the First Alternative Data Release of the TIFR GMRT Sky Survey (TGSS ADR1) at 148 MHz and LOFAR's first all-sky survey, the Multifrequency Snapshot Sky Survey (MSSS) at 140 MHz. We find a scaling relation , with a logarithmic slope of , which is in good agreement with previous results based on data at 327 MHz. The large scatter present in this correlation confirms the conclusion reached at higher frequencies that the total radio luminosity at a single frequency is a poor predictor of the total jet power. We show that including measurements at 148 MHz alone is insufficient to reliably compute the bolometric radio luminosity and reduce the scatter in the correlation. For a subset of four well-resolved sources, we examine the detected extended structures at low frequencies and compare with the morphology known from higher frequency images and Chandra X-ray maps. In Perseus we discuss details in the structures of the radio mini-halo, while in the 2A 0335+096 cluster we observe new diffuse emission associated with multiple X-ray cavities and likely originating from past activity. For A2199 and MS 0735.6+7421, we confirm that the observed low-frequency radio lobes are confined to the extents known from higher frequencies. This new low-frequency analysis highlights the fact that existing cavity power to radio luminosity relations are based on a relatively narrow range of AGN outburst ages. We discuss how the correlation could be extended using low frequency data from the LOFAR Two-metre Sky Survey (LoTSS) in combination with future, complementary deeper X-ray observations.Peer reviewe
Imaging Jupiter's radiation belts down to 127 MHz with LOFAR
Context. Observing Jupiter's synchrotron emission from the Earth remains
today the sole method to scrutinize the distribution and dynamical behavior of
the ultra energetic electrons magnetically trapped around the planet (because
in-situ particle data are limited in the inner magnetosphere). Aims. We perform
the first resolved and low-frequency imaging of the synchrotron emission with
LOFAR at 127 MHz. The radiation comes from low energy electrons (~1-30 MeV)
which map a broad region of Jupiter's inner magnetosphere. Methods (see article
for complete abstract) Results. The first resolved images of Jupiter's
radiation belts at 127-172 MHz are obtained along with total integrated flux
densities. They are compared with previous observations at higher frequencies
and show a larger extent of the synchrotron emission source (>=4 ). The
asymmetry and the dynamic of east-west emission peaks are measured and the
presence of a hot spot at lambda_III=230 {\deg} 25 {\deg}. Spectral flux
density measurements are on the low side of previous (unresolved) ones,
suggesting a low-frequency turnover and/or time variations of the emission
spectrum. Conclusions. LOFAR is a powerful and flexible planetary imager. The
observations at 127 MHz depict an extended emission up to ~4-5 planetary radii.
The similarities with high frequency results reinforce the conclusion that: i)
the magnetic field morphology primarily shapes the brightness distribution of
the emission and ii) the radiating electrons are likely radially and
latitudinally distributed inside about 2 . Nonetheless, the larger extent
of the brightness combined with the overall lower flux density, yields new
information on Jupiter's electron distribution, that may shed light on the
origin and mode of transport of these particles.Comment: 10 pages, 12 figures, accepted for publication in A&A (27/11/2015) -
abstract edited because of limited character
- …