189 research outputs found

    Extensive Copy-Number Variation of Young Genes across Stickleback Populations

    Get PDF
    MM received funding from the Max Planck innovation funds for this project. PGDF was supported by a Marie Curie European Reintegration Grant (proposal nr 270891). CE was supported by German Science Foundation grants (DFG, EI 841/4-1 and EI 841/6-1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A three year descriptive study of early onset neonatal sepsis in a refugee population on the Thailand Myanmar border.

    Get PDF
    BACKGROUND: Each year an estimated four million neonates die, the majority in the first week of life. One of the major causes of death is sepsis. Proving the incidence and aetiology of neonatal sepsis is difficult, particularly in resource poor settings where the majority of the deaths occur. METHODS: We conducted a three year observational study of clinically diagnosed early onset (<7 days of age) neonatal sepsis (EONS) in infants born to mothers following antenatal care at the Shoklo Malaria Research Unit clinic in Maela camp for displaced persons on the Thailand-Myanmar border. Episodes of EONS were identified using a clinical case definition. Conventional and molecular microbiological techniques were employed in order to determine underlying aetiology. RESULTS: From April 2009 until April 2012, 187 infants had clinical signs of EONS, giving an incidence rate of 44.8 per 1000 live births (95% CI 38.7-51.5). One blood culture was positive for Escherichia coli, E. coli was detected in the cerebrospinal fluid specimen in this infant, and in an additional two infants, by PCR. Therefore, the incidence of bacteriologically proven EONS was 0.7 per 1000 live births (95% CI 0.1-2.1). No infants enrolled in study died as a direct result of EONS. CONCLUSION: A low incidence of bacteriologically proven EONS was seen in this study, despite a high incidence of clinically diagnosed EONS. The use of molecular diagnostics and nonspecific markers of infection need to be studied in resource poor settings to improve the diagnosis of EONS and rationalise antibiotic use

    Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) are industrially important copper-dependent enzymes that oxidatively cleave polysaccharides. Here we present a functional and structural characterization of two closely related AA9-family LPMOs from Lentinus similis (LsAA9A) and Collariella virescens (CvAA9A). LsAA9A and CvAA9A cleave a range of polysaccharides, including cellulose, xyloglucan, mixed-linkage glucan and glucomannan. LsAA9A additionally cleaves isolated xylan substrates. The structures of CvAA9A and of LsAA9A bound to cellulosic and non-cellulosic oligosaccharides provide insight into the molecular determinants of their specificity. Spectroscopic measurements reveal differences in copper co-ordination upon the binding of xylan and glucans. LsAA9A activity is less sensitive to the reducing agent potential when cleaving xylan, suggesting that distinct catalytic mechanisms exist for xylan and glucan cleavage. Overall, these data show that AA9 LPMOs can display different apparent substrate specificities dependent upon both productive protein–carbohydrate interactions across a binding surface and also electronic considerations at the copper active site

    Leukemia Inhibitory Factor in Rat Fetal Lung Development: Expression and Functional Studies

    Get PDF
    Background: Leukemia inhibitory factor (LIF) and interleukin-6 (IL-6) are members of the family of the glycoprotein 130 (gp130)-type cytokines. These cytokines share gp130 as a common signal transducer, which explains why they show some functional redundancy. Recently, it was demonstrated that IL-6 promotes fetal lung branching. Additionally, LIF has been implicated in developmental processes of some branching organs. Thus, in this study LIF expression pattern and its effects on fetal rat lung morphogenesis were assessed. Methodology/Principal Findings: LIF and its subunit receptor LIFRa expression levels were evaluated by immunohistochemistry and western blot in fetal rat lungs of different gestational ages, ranging from 13.5 to 21.5 days post-conception. Throughout all gestational ages studied, LIF was constitutively expressed in pulmonary epithelium, whereas LIFRa was first mainly expressed in the mesenchyme, but after pseudoglandular stage it was also observed in epithelial cells. These results point to a LIF epithelium-mesenchyme cross-talk, which is known to be important for lung branching process. Regarding functional studies, fetal lung explants were cultured with increasing doses of LIF or LIF neutralizing antibodies during 4 days. MAPK, AKT, and STAT3 phosphorylation in the treated lung explants was analyzed. LIF supplementation significantly inhibited lung growth in spite of an increase in p44/42 phosphorylation. On the other hand, LIF inhibition significantly stimulated lung growth via p38 and Akt pathways

    Municipal distribution of breast cancer mortality among women in Spain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spain has one of the lowest rates of breast cancer in Europe, though estimated incidence has risen substantially in recent decades. Some years ago, the Spanish Cancer Mortality Atlas showed Spain as having a heterogeneous distribution of breast cancer mortality at a provincial level. This paper describes the municipal distribution of breast cancer mortality in Spain and its relationship with socio-economic indicators.</p> <p>Methods</p> <p>Breast cancer mortality was modelled using the Besag-York-Molliè autoregressive spatial model, including socio-economic level, rurality and percentage of population over 64 years of age as surrogates of reproductive and lifestyle risk factors. Municipal relative risks (RRs) were independently estimated for women aged under 50 years and for those aged 50 years and over. Maps were plotted depicting smoothed RR estimates and the distribution of the posterior probability of RR>1.</p> <p>Results</p> <p>In women aged 50 years and over, mortality increased with socio-economic level, and was lower in rural areas and municipalities with higher proportion of old persons. Among women aged under 50 years, rurality was the only statistically significant explanatory variable.</p> <p>For women older than 49 years, the highest relative risks were mainly registered for municipalities located in the Canary Islands, Balearic Islands, the Mediterranean coast of Catalonia and Valencia, plus others around the Ebro River. In premenopausal women, the pattern was similar but tended to be more homogeneous. In mainland Spain, a group of municipalities with high RRs were located in Andalusia, near the left bank of the Guadalquivir River.</p> <p>Conclusion</p> <p>As previously observed in other contexts, mortality rates are positively related with socio-economic status and negatively associated with rurality and the presence of a higher proportion of people over age 64 years. Taken together, these variables represent the influence of lifestyle factors which have determined the increase in breast cancer frequency over recent decades. The results for the younger group of women suggest an attenuation of the socio-economic gradient in breast cancer mortality in Spain. The geographical variation essentially suggests the influence of other environmental variables, yet the descriptive nature of this study does not allow for the main determinants to be established.</p

    Crown Plasticity and Competition for Canopy Space: A New Spatially Implicit Model Parameterized for 250 North American Tree Species

    Get PDF
    BACKGROUND: Canopy structure, which can be defined as the sum of the sizes, shapes and relative placements of the tree crowns in a forest stand, is central to all aspects of forest ecology. But there is no accepted method for deriving canopy structure from the sizes, species and biomechanical properties of the individual trees in a stand. Any such method must capture the fact that trees are highly plastic in their growth, forming tessellating crown shapes that fill all or most of the canopy space. METHODOLOGY/PRINCIPAL FINDINGS: We introduce a new, simple and rapidly-implemented model--the Ideal Tree Distribution, ITD--with tree form (height allometry and crown shape), growth plasticity, and space-filling, at its core. The ITD predicts the canopy status (in or out of canopy), crown depth, and total and exposed crown area of the trees in a stand, given their species, sizes and potential crown shapes. We use maximum likelihood methods, in conjunction with data from over 100,000 trees taken from forests across the coterminous US, to estimate ITD model parameters for 250 North American tree species. With only two free parameters per species--one aggregate parameter to describe crown shape, and one parameter to set the so-called depth bias--the model captures between-species patterns in average canopy status, crown radius, and crown depth, and within-species means of these metrics vs stem diameter. The model also predicts much of the variation in these metrics for a tree of a given species and size, resulting solely from deterministic responses to variation in stand structure. CONCLUSIONS/SIGNIFICANCE: This new model, with parameters for US tree species, opens up new possibilities for understanding and modeling forest dynamics at local and regional scales, and may provide a new way to interpret remote sensing data of forest canopies, including LIDAR and aerial photography

    Genetics of human hydrocephalus

    Get PDF
    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human hydrocephalus. This review summarizes the recent findings on this issue among human and animal models, especially with reference to the molecular genetics, pathological, physiological and cellular studies, and identifies future research directions

    We're in this Together: Sensation of the Host Cell Environment by Endosymbiotic Bacteria

    Get PDF
    Bacteria inhabit diverse environments, including the inside of eukaryotic cells. While a bacterial invader may initially act as a parasite or pathogen, a subsequent mutualistic relationship can emerge in which the endosymbiotic bacteria and their host share metabolites. While the environment of the host cell provides improved stability when compared to an extracellular environment, the endosymbiont population must still cope with changing conditions, including variable nutrient concentrations, the host cell cycle, host developmental programs, and host genetic variation. Furthermore, the eukaryotic host can deploy mechanisms actively preventing a bacterial return to a pathogenic state. Many endosymbionts are likely to use two-component systems (TCSs) to sense their surroundings, and expanded genomic studies of endosymbionts should reveal how TCSs may promote bacterial integration with a host cell. We suggest that studying TCS maintenance or loss may be informative about the evolutionary pathway taken toward endosymbiosis, or even toward endosymbiont-to-organelle conversion.Peer reviewe

    Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy

    Get PDF
    Estrogen receptor (ER) has a crucial role in normal breast development and is expressed in the most common breast cancer subtypes. Importantly, its expression is very highly predictive for response to endocrine therapy. Current endocrine therapies for ER-positive breast cancers target ER function at multiple levels. These include targeting the level of estrogen, blocking estrogen action at the ER, and decreasing ER levels. However, the ultimate effectiveness of therapy is limited by either intrinsic or acquired resistance. Identifying the factors and pathways responsible for sensitivity and resistance remains a challenge in improving the treatment of breast cancer. With a better understanding of coordinated action of ER, its coregulatory factors, and the influence of other intracellular signaling cascades, improvements in breast cancer therapy are emerging
    corecore