521 research outputs found

    Spatially resolving the atmosphere of the non-Mira-type AGB star SW Vir in near-infrared molecular and atomic lines with VLTI/AMBER

    Full text link
    We present a near-infrared spectro-interferometric observation of the non-Mira-type, semiregular asymptotic giant branch star SW Vir. Our aim is to probe the physical properties of the outer atmosphere with spatially resolved data in individual molecular and atomic lines. We observed SW Vir in the spectral window between 2.28 and 2.31 micron with the near-infrared interferometric instrument AMBER at ESO's Very Large Telescope Interferometer (VLTI). Thanks to AMBER's high spatial resolution and high spectral resolution of 12000, the atmosphere of SW Vir has been spatially resolved not only in strong CO first overtone lines but also in weak molecular and atomic lines of H2O, CN, HF, Ti, Fe, Mg, and Ca. Comparison with the MARCS photospheric models reveals that the star appears larger than predicted by the hydrostatic models not only in the CO lines but also even in the weak molecular and atomic lines. We found that this is primarily due to the H2O lines (but also possibly due to the HF and Ti lines) originating in the extended outer atmosphere. Although the H2O lines manifest themselves very little in the spatially unresolved spectrum, the individual rovibrational H2O lines from the outer atmosphere can be identified in the spectro-interferometric data. Our modeling suggests an H2O column density of 10^{19}--10^{20} cm^{-2} in the outer atmosphere extending out to ~2 Rstar. Our study has revealed that the effects of the nonphotospheric outer atmosphere are present in the spectro-interferometric data not only in the strong CO first overtone lines but also in the weak molecular and atomic lines. Therefore, analyses of spatially unresolved spectra, such as for example analyses of the chemical composition, should be carried out with care even if the lines appear to be weak.Comment: 8 pages, 6 figures, accepted for publication in Astronomy and Astrophysic

    Temperature and pore pressure effects on the shear strength of granite in the brittle-plastic transition regime

    Get PDF
    Currently published lithospheric strength profiles lack constraints from experimental data for shear failure of typical crustal materials in the brittle-plastic transition regime in wet environments. Conventional triaxial shear fracture experiments were conducted to determine temperature and pore pressure effects on shear fracture strength of wet and dry Tsukuba granite. Experimental conditions were 70MPa < P-C < 480MPa, 10MPa < P-p < 300MPa, 25 A degreesC < T < 480 degreesC, at a constant strain rate of 10(-5)s(-1). An empirical relation is proposed which can predict the shear strength of Tsukuba granite, within the range of experimental conditions. Mechanical pore pressure effects are incorporated in the effective stress law. Chemical effects are enhanced at temperatures above 300 degreesC. Below 300 degreesC wet and dry granite strengths are temperature insensitive and wholly within the brittle regime. Above 400 degreesC, semi-brittle effects and ductility are observed

    New insights into the dust formation of oxygen-rich AGB stars

    Full text link
    We observed the AGB stars S Ori, GX Mon and R Cnc with the MIDI instrument at the VLTI. We compared the data to radiative transfer models of the dust shells, where the central stellar intensity profiles were described by dust-free dynamic model atmospheres. We used Al2O3 and warm silicate grains. Our S Ori and R Cnc data could be well described by an Al2O3 dust shell alone, and our GX Mon data by a mix of an Al2O3 and a silicate shell. The best-fit parameters for S Ori and R Cnc included photospheric angular diameters Theta(Phot) of 9.7+/-1.0mas and 12.3+/-1.0mas, optical depths tau(V)(Al2O3) of 1.5+/-0.5 and 1.35+/-0.2, and inner radii R(in) of 1.9+/-0.3R(Phot) and 2.2+/-0.3R(Phot), respectively. Best-fit parameters for GX Mon were Theta(Phot)=8.7+/-1.3mas, tau(V)(Al2O3)=1.9+/-0.6, R(in)(Al2O3)=2.1+/-0.3R(Phot), tau(V)(silicate)=3.2+/-0.5, and R(in)(silicate)=4.6+/-0.2R(Phot). Our model fits constrain the chemical composition and the inner boundary radii of the dust shells, as well as the photospheric angular diameters. Our interferometric results are consistent with Al2O3 grains condensing close to the stellar surface at about 2 stellar radii, co-located with the extended atmosphere and SiO maser emission, and warm silicate grains at larger distances of about 4--5 stellar radii. We verified that the number densities of aluminum can match that of the best-fit Al2O3 dust shell near the inner dust radius in sufficiently extended atmospheres, confirming that Al2O3 grains can be seed particles for the further dust condensation. Together with literature data of the mass-loss rates, our sample is consistent with a hypothesis that stars with low mass-loss rates form primarily dust that preserves the spectral properties of Al2O3, and stars with higher mass-loss rate form dust with properties of warm silicates.Comment: 20 pages, 10 figure

    Asymmetric silicate dust distribution toward the silicate carbon star BM Gem

    Full text link
    Silicate carbon stars show the 10 micron silicate emission, despite their carbon-rich photospheres. They are considered to have circumbinary or circum-companion disks, which serve as a reservoir of oxygen-rich material shed by mass loss in the past. We present N-band spectro-interferometric observations of the silicate carbon star BM Gem using MIDI at the Very Large Telescope Interferometer (VLTI). Our aim is to probe the spatial distribution of oxygen-rich dust with high spatial resolution. BM Gem was observed with VLTI/MIDI at 44--62 m baselines using the UT2-UT3 and UT3-UT4 baseline configurations. The N-band visibilities observed for BM Gem show a steep decrease from 8 to ~10 micron and a gradual increase longward of ~10 micron, reflecting the optically thin silicate emission feature emanating from sub-micron-sized amorphous silicate grains. The differential phases obtained at baselines of ~44--46 m show significant non-zero values (~ -70 degrees) in the central part of the silicate emission feature between ~9 and 11 micron, revealing a photocenter shift and the asymmetric nature of the silicate emitting region. The observed N-band visibilities and differential phases can be fairly explained by a simple geometrical model in which the unresolved star is surrounded by a ring with azimuthal brightness modulation. The best-fit model is characterized by a broad ring (~70 mas across at 10 micron) with a bright region which is offset from the unresolved star by ~20 mas at a position angle of ~280 degrees. This model can be interpreted as a system with a circum-companion disk and is consistent with the spectroscopic signatures of an accretion disk around an unseen companion recently discovered in the violet spectrum of BM Gem.Comment: 7 pages, 3 figures, accepted for publication in A&

    Structure and shaping processes within the extended atmospheres of AGB stars

    Full text link
    We present recent studies using the near-infrared instrument AMBER of the VLT Interferometer (VLTI) to investigate the structure and shaping processes within the extended atmosphere of AGB stars. Spectrally resolved near-infrared AMBER observations of the Mira variable S Ori have revealed wavelength-dependent apparent angular sizes. These data were successfully compared to dynamic model atmospheres, which predict wavelength-dependent radii because of geometrically extended molecular layers. Most recently, AMBER closure phase measurements of several AGB stars have also revealed wavelength-dependent deviations from 0/180 deg., indicating deviations from point symmetry. The variation of closure phase with wavelength indicates a complex non-spherical stratification of the extended atmosphere, and may reveal whether observed asymmetries are located near the photosphere or in the outer molecular layers. Concurrent observations of SiO masers located within the extended molecular layers provide us with additional information on the morphology, conditions, and kinematics of this shell. These observations promise to provide us with new important insights into the shaping processes at work during the AGB phase. With improved imaging capabilities at the VLTI, we expect to extend the successful story of imaging studies of planetary nebulae to the photosphere and extended outer atmosphere of AGB stars.Comment: 6 pages, Proc. of "Asymmetric Planetary Nebulae V", A.A. Zijlstra, F. Lykou, I. McDonald, and E. Lagadec (eds.), Jodrell Bank Centre for Astrophysics, Manchester, UK, 201

    Temporal variations of the outer atmosphere and the dust shell of the carbon-rich Mira variable V Oph probed with VLTI/MIDI

    Get PDF
    We present the first multi-epoch N-band spectro-interferometric observations of the carbon-rich Mira variable V Oph using MIDI at the ESO's Very Large Telescope Interferometer. Our MIDI observations were carried out at three different phases 0.18, 0.49, and 0.65, using three different baselines configurations (UT2-UT4, UT1-UT4, and UT2-UT3) with projected baseline lengths of 42-124 m. The wavelength dependence of the uniform-disk diameters obtained at all epochs is characterized by a roughly constant region between 8 and 10 micron with a slight dip centered at ~9.5 micron and a gradual increase longward of 10 micron. These N-band angular sizes are significantly larger than the estimated photospheric size of V Oph. The angular sizes observed at different epochs reveal that the object appears smaller at phase 0.49 (minimum light) with uniform-disk diameters of ~5-12 mas than at phases 0.18 (~12-20 mas) and 0.65 (~9-15 mas). We interpret these results with a model consisting of optically thick C2H2 layers and an optically thin dust shell. Our modeling suggests that the C2H2 layers around V Oph are more extended (~1.7-1.8 Rstar) at phases 0.18 and 0.65 than at phase 0.49 (~1.4 Rstar) and that the C2H2 column densities appear to be the smallest at phase 0.49. We also find that the dust shell consists of amorphous carbon and SiC with an inner radius of ~2.5 Rstar, and the total optical depths at phases 0.18 and 0.65 are higher than that at phase 0.49. Our MIDI observations and modeling indicate that carbon-rich Miras also have extended layers of polyatomic molecules as previously confirmed in oxygen-rich Miras

    Tests of stellar model atmospheres by optical interferometry III: NPOI and VINCI interferometry of the M0 giant gamma Sge covering 0.5 - 2.2 microns

    Get PDF
    Aims: We present a comparison of the visual and NIR intensity profile of the M0 giant gamma Sagittae to plane-parallel ATLAS 9 as well as to plane-parallel & spherical PHOENIX model atmospheres. Methods: We use previously described visual interferometric data obtained with the NPOI in July 2000. We apply the recently developed technique of coherent integration, and thereby obtain visibility data of more spectral channels and with higher precision than before. In addition, we employ new measurements of the K-band diameter of gamma Sagittae obtained with the instrument VINCI at the VLTI in 2002. Results: The spherical PHOENIX model leads to a precise definition of the Rosseland angular diameter and a consistent high-precision diameter value for our NPOI and VLTI/VINCI data sets of Theta_Ross=6.06 pm 0.02 mas, with the Hipparcos parallax corresponding to R_Ross=55 pm 4 R_sun, and with the bolometric flux corresponding to an effective temperature T_eff=3805 pm 55 K. Our visual visibility data close to the first minimum and in the second lobe constrain the limb-darkening effect and are generally consistent with the model atmosphere predictions. The visual closure phases exhibit a smooth transition between 0 and pi. Conclusions: The agreement between the NPOI and VINCI diameter values increases the confidence in the model atmosphere predictions from optical to NIR wavelengths as well as in the calibration and accuracy of both interferometric facilities. The consistent night-by-night diameter values of VINCI give additional confidence in the given uncertainties. The closure phases suggest a slight deviation from circular symmetry, which may be due to surface features, an asymmetric extended layer, or a faint unknown companion.Comment: 12 pages, 9 figures, accepted by A&A. Also available from http://www.aanda.org/articles/aa/pdf/forth/aa5853_06.pd

    The Mira variable S Ori: Relationships between the photosphere, molecular layer, dust shell, and SiO maser shell at 4 epochs

    Full text link
    We present the first multi-epoch study that includes concurrent mid-infrared and radio interferometry of an oxygen-rich Mira star. We obtained mid-infrared interferometry of S Ori with VLTI/MIDI at four epochs between December 2004 and December 2005. We concurrently observed v=1, J=1-0 (43.1 GHz), and v=2, J=1-0 (42.8 GHz) SiO maser emission toward S Ori with the VLBA at three epochs. The MIDI data are analyzed using self-excited dynamic model atmospheres including molecular layers, complemented by a radiative transfer model of the circumstellar dust shell. The VLBA data are reduced to the spatial structure and kinematics of the maser spots. The modeling of our MIDI data results in phase-dependent continuum photospheric angular diameters between about 7.9 mas (Phase 0.55) and 9.7 mas (Phase 1.16). The dust shell can best be modeled with Al2O3 grains using phase-dependent inner boundary radii between 1.8 and 2.4 photospheric radii. The dust shell appears to be more compact with greater optical depth near visual minimum, and more extended with lower optical depth after visual maximum. The ratios of the SiO maser ring radii to the photospheric radii are between about 1.9 and 2.4. The maser spots mark the region of the molecular atmospheric layers just beyond the steepest decrease in the mid-infrared model intensity profile. Their velocity structure indicates a radial gas expansion. Al2O3 dust grains and SiO maser spots form at relatively small radii of 1.8-2.4 photospheric radii. Our results suggest increased mass loss and dust formation close to the surface near the minimum visual phase, when Al2O3 dust grains are co-located with the molecular gas and the SiO maser shells, and a more expanded dust shell after visual maximum. Silicon does not appear to be bound in dust, as our data show no sign of silicate grains.Comment: Accepted for publication in A&A. See ESO press release 25/07 at http://www.eso.org/public/outreach/press-rel/pr-2007/pr-25-07.htm
    corecore