228 research outputs found

    Dissection of the transcriptional regulation of grape ASR and response to glucose and abscisic acid

    Get PDF
    Despite the fact that the precise physiological function of ASRs [abscisic acid (ABA), stress, ripening] remains unknown, they have been suggested to play a dual role in the plant response to environmental cues, as highly hydrophilic proteins for direct protection, as well as transcription factors involved in the regulation of gene expression. To investigate further the biological positioning of grape ASR in the hormonal and metabolic signal network, three promoters corresponding to its cDNA were isolated and submited to a detailed in silico and functional analysis. The results obtained provided evidence for the allelic polymorphism of the grape ASR gene, the organ-preferential expression conferred on the GUS reporter gene, and the specific phloem tissue localization revealed by in situ hybridization. The study of glucose and ABA signalling in its transcriptional control, by transfection of grape protoplasts using the dual luciferase system, revealed the complexity of ASR gene expression regulation. A model was proposed allowing a discussion of the place of ASR in the fine tuning of hormonal and metabolic signalling involved in the integration of environmental cues by the plant organism

    Cabergoline therapy for macroprolactinoma during pregnancy: a case report.

    Get PDF
    Background: We assessed the safety of Cabergoline therapy during pregnancy in a lady with hyperprolactinemia intolerant to Bromocriptine. Case presentation: We report the case of a 31 year old lady who presented to us with uncontrolled hyperprolactinemia. A pituitary Macroadenoma was demonstrated by MRI. Due to intolerance to Bromocriptine, Cabergoline was started. The patient improved and subsequently conceived. MRI in the second trimester demonstrated further reduction in the tumor size. It was decided to continue Cabergoline throughout pregnancy to ensure further reduction in tumor size until delivery and to hold Cabergoline during postpartum period to allow for an adequate interval of breastfeeding. At 37 weeks of gestation, the patient delivered a healthy baby. Conclusion: We were able to safely treat macroprolactinemia in our patient during pregnancy with cabergoline. This case report contributes to the relatively meager data available which advocates the safety of cabergoline therapy in pregnant hyperprolactinemic patients

    Bumblebees exhibit the memory spacing effect

    Get PDF
    Associative learning is key to how bees recognize and return to rewarding floral resources. It thus plays a major role in pollinator floral constancy and plant gene flow. Honeybees are the primary model for pollinator associative learning, but bumblebees play an important ecological role in a wider range of habitats, and their associative learning abilities are less well understood. We assayed learning with the proboscis extension reflex (PER), using a novel method for restraining bees (capsules) designed to improve bumblebee learning. We present the first results demonstrating that bumblebees exhibit the memory spacing effect. They improve their associative learning of odor and nectar reward by exhibiting increased memory acquisition, a component of long-term memory formation, when the time interval between rewarding trials is increased. Bombus impatiens forager memory acquisition (average discrimination index values) improved by 129% and 65% at inter-trial intervals (ITI) of 5 and 3 min, respectively, as compared to an ITI of 1 min. Memory acquisition rate also increased with increasing ITI. Encapsulation significantly increases olfactory memory acquisition. Ten times more foragers exhibited at least one PER response during training in capsules as compared to traditional PER harnesses. Thus, a novel conditioning assay, encapsulation, enabled us to improve bumblebee-learning acquisition and demonstrate that spaced learning results in better memory consolidation. Such spaced learning likely plays a role in forming long-term memories of rewarding floral resources

    The Type and the Position of HNF1A Mutation Modulate Age at Diagnosis of Diabetes in Patients with Maturity-Onset Diabetes of the Young (MODY)-3

    Get PDF
    OBJECTIVE—The clinical expression of maturity-onset diabetes of the young (MODY)-3 is highly variable. This may be due to environmental and/or genetic factors, including molecular characteristics of the hepatocyte nuclear factor 1-α (HNF1A) gene mutation. RESEARCH DESIGN AND METHODS—We analyzed the mutations identified in 356 unrelated MODY3 patients, including 118 novel mutations, and searched for correlations between the genotype and age at diagnosis of diabetes. RESULTS—Missense mutations prevailed in the dimerization and DNA-binding domains (74%), while truncating mutations were predominant in the transactivation domain (62%). The majority (83%) of the mutations were located in exons 1- 6, thus affecting the three HNF1A isoforms. Age at diagnosis of diabetes was lower in patients with truncating mutations than in those with missense mutations (18 vs. 22 years, P = 0.005). Missense mutations affecting the dimerization/DNA-binding domains were associated with a lower age at diagnosis than those affecting the transactivation domain (20 vs. 30 years, P = 10−4). Patients with missense mutations affecting the three isoforms were younger at diagnosis than those with missense mutations involving one or two isoforms (P = 0.03). CONCLUSIONS—These data show that part of the variability of the clinical expression in MODY3 patients may be explained by the type and the location of HNF1A mutations. These findings should be considered in studies for the search of additional modifier genetic factors

    NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley

    Get PDF
    Under specific stress treatments (cold, starvation), in vitro microspores can be induced to deviate from their gametophytic development and switch to embryogenesis, forming haploid embryos and homozygous breeding lines in a short period of time. The inductive stress produces reactive oxygen species (ROS) and nitric oxide (NO), signalling molecules mediating cellular responses, and cell death, modifying the embryogenic microspore response and therefore, the efficiency of the process. This work analysed cell death, caspase 3-like activity, and ROS and NO production (using fluorescence probes and confocal analysis) after inductive stress in barley microspore cultures and embryogenic suspension cultures, as an in vitro system which permitted easy handling for comparison. There was an increase in caspase 3-like activity and cell death after stress treatment in microspore and suspension cultures, while ROS increased in non-induced microspores and suspension cultures. Treatments of the cultures with a caspase 3 inhibitor, DEVD-CHO, significantly reduced the cell death percentages. Stress-treated embryogenic suspension cultures exhibited high NO signals and cell death, while treatment with S-nitrosoglutathione (NO donor) in control suspension cultures resulted in even higher cell death. In contrast, in microspore cultures, NO production was detected after stress, and, in the case of 4-day microspore cultures, in embryogenic microspores accompanying the initiation of cell divisions. Subsequent treatments of stress-treated microspore cultures with ROS and NO scavengers resulted in a decreasing cell death during the early stages, but later they produced a delay in embryo development as well as a decrease in the percentage of embryogenesis in microspores. Results showed that the ROS increase was involved in the stress-induced programmed cell death occurring at early stages in both non-induced microspores and embryogenic suspension cultures; whereas NO played a dual role after stress in the two in vitro systems, one involved in programmed cell death in embryogenic suspension cultures and the other in the initiation of cell division leading to embryogenesis in reprogrammed microspores

    Cloacal Bacterial Diversity Increases with Multiple Mates: Evidence of Sexual Transmission in Female Common Lizards

    Get PDF
    Sexually transmitted diseases have often been suggested as a potential cost of multiple mating and as playing a major role in the evolution of mating systems. Yet there is little empirical data relating mating strategies to sexually transmitted microorganisms in wild populations. We investigated whether mating behaviour influences the diversity and composition of cloacal assemblages by comparing bacterial communities in the cloaca of monandrous and polyandrous female common lizards Zootoca vivipara sampled after the mating period. We found that polyandrous females harboured more diverse communities and differed more in community composition than did monandrous females. Furthermore, cloacal diversity and variability were found to decrease with age in polyandrous females. Our results suggest that the higher bacterial diversity found in polyandrous females is due to the sexual transmission of bacteria by multiple mates. The impact of mating behaviour on the cloacal microbiota may have fitness consequences for females and may comprise a selective pressure shaping the evolution of mating systems

    Lateralization in the Invertebrate Brain: Left-Right Asymmetry of Olfaction in Bumble Bee, Bombus terrestris

    Get PDF
    Brain and behavioural lateralization at the population level has been recently hypothesized to have evolved under social selective pressures as a strategy to optimize coordination among asymmetrical individuals. Evidence for this hypothesis have been collected in Hymenoptera: eusocial honey bees showed olfactory lateralization at the population level, whereas solitary mason bees only showed individual-level olfactory lateralization. Here we investigated lateralization of odour detection and learning in the bumble bee, Bombus terrestris L., an annual eusocial species of Hymenoptera. By training bumble bees on the proboscis extension reflex paradigm with only one antenna in use, we provided the very first evidence of asymmetrical performance favouring the right antenna in responding to learned odours in this species. Electroantennographic responses did not reveal significant antennal asymmetries in odour detection, whereas morphological counting of olfactory sensilla showed a predominance in the number of olfactory sensilla trichodea type A in the right antenna. The occurrence of a population level asymmetry in olfactory learning of bumble bee provides new information on the relationship between social behaviour and the evolution of population-level asymmetries in animals

    Systematic analysis of mitochondrial genes associated with hearing loss in the Japanese population: dHPLC reveals a new candidate mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variants of mitochondrial DNA (mtDNA) have been evaluated for their association with hearing loss. Although ethnic background affects the spectrum of mtDNA variants, systematic mutational analysis of mtDNA in Japanese patients with hearing loss has not been reported.</p> <p>Methods</p> <p>Using denaturing high-performance liquid chromatography combined with direct sequencing and cloning-sequencing, Japanese patients with prelingual (N = 54) or postlingual (N = 80) sensorineural hearing loss not having pathogenic mutations of m.1555A > G and m.3243A > G nor <it>GJB2 </it>were subjected to mutational analysis of mtDNA genes (<it>12S rRNA</it>, <it>tRNA</it><sup><it>Leu(UUR)</it></sup>, <it>tRNA</it><sup><it>Ser(UCN)</it></sup>, <it>tRNA</it><sup><it>Lys</it></sup>, <it>tRNA</it><sup><it>His</it></sup>, <it>tRNA</it><sup><it>Ser(AGY)</it></sup>, and <it>tRNA</it><sup><it>Glu</it></sup>).</p> <p>Results</p> <p>We discovered 15 variants in <it>12S rRNA </it>and one homoplasmic m.7501A > G variant in <it>tRNA</it><sup><it>Ser(UCN)</it></sup>; no variants were detected in the other genes. Two criteria, namely the low frequency in the controls and the high conservation among animals, selected the m.904C > T and the m.1105T > C variants in <it>12S rRNA </it>as candidate pathogenic mutations. Alterations in the secondary structures of the two variant transcripts as well as that of m.7501A > G in <it>tRNA</it><sup><it>Ser(UCN) </it></sup>were predicted.</p> <p>Conclusions</p> <p>The m.904C > T variant was found to be a new candidate mutation associated with hearing loss. The m.1105T > C variant is unlikely to be pathogenic. The pathogenicity of the homoplasmic m.7501T > A variant awaits further study.</p

    Adverse outcome pathways (AOPs) for radiation-induced reproductive effects in environmental species: state of science and identification of a consensus AOP network

    Get PDF
    Background Reproductive effects of ionizing radiation in organisms have been observed under laboratory and field conditions. Such assessments often rely on associations between exposure and effects, and thus lacking a detailed mechanistic understanding of causality between effects occurring at different levels of biological organization. The Adverse Outcome Pathway (AOP), a conceptual knowledge framework to capture, organize, evaluate and visualize the scientific knowledge of relevant toxicological effects, has the potential to evaluate the causal relationships between molecular, cellular, individual, and population effects. This paper presents the first development of a set of consensus AOPs for reproductive effects of ionizing radiation in wildlife. This work was performed by a group of experts formed during a workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. The work presents a series of taxon-specific case studies that were used to identify relevant empirical evidence, identify common AOP components and propose a set of consensus AOPs that could be organized into an AOP network with broader taxonomic applicability. Conclusion Expert consultation led to the identification of key biological events and description of causal linkages between ionizing radiation, reproductive impairment and reduction in population fitness. The study characterized the knowledge domain of taxon-specific AOPs, identified knowledge gaps pertinent to reproductive-relevant AOP development and reflected on how AOPs could assist applications in radiation (radioecological) research, environmental health assessment, and radiological protection. Future advancement and consolidation of the AOPs is planned to include structured weight of evidence considerations, formalized review and critical assessment of the empirical evidence prior to formal submission and review by the OECD sponsored AOP development program

    Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning

    Get PDF
    More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects’ antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation
    corecore