2,209 research outputs found

    Effect of an electric field on superfluid helium scintillation produced by alpha-particle sources

    Full text link
    We report a study of the intensity and time dependence of scintillation produced by weak alpha particle sources in superfluid helium in the presence of an electric field (0 - 45 kV/cm) in the temperature range of 0.2 K to 1.1 K at the saturated vapor pressure. Both the prompt and the delayed components of the scintillation exhibit a reduction in intensity with the application of an electric field. The reduction in the intensity of the prompt component is well approximated by a linear dependence on the electric field strength with a reduction of 15% at 45 kV/cm. When analyzed using the Kramers theory of columnar recombination, this electric field dependence leads to the conclusion that roughly 40% of the scintillation results from species formed from atoms originally promoted to excited states and 60% from excimers created by ionization and subsequent recombination with the charges initially having a cylindrical Gaussian distribution about the alpha track of 60 nm radius. The intensity of the delayed component of the scintillation has a stronger dependence on the electric field strength and on temperature. The implications of these data on the mechanisms affecting scintillation in liquid helium are discussed.Comment: 17 pages, 23 figure

    Interoperability in the OpenDreamKit Project: The Math-in-the-Middle Approach

    Full text link
    OpenDreamKit --- "Open Digital Research Environment Toolkit for the Advancement of Mathematics" --- is an H2020 EU Research Infrastructure project that aims at supporting, over the period 2015--2019, the ecosystem of open-source mathematical software systems. From that, OpenDreamKit will deliver a flexible toolkit enabling research groups to set up Virtual Research Environments, customised to meet the varied needs of research projects in pure mathematics and applications. An important step in the OpenDreamKit endeavor is to foster the interoperability between a variety of systems, ranging from computer algebra systems over mathematical databases to front-ends. This is the mission of the integration work package (WP6). We report on experiments and future plans with the \emph{Math-in-the-Middle} approach. This information architecture consists in a central mathematical ontology that documents the domain and fixes a joint vocabulary, combined with specifications of the functionalities of the various systems. Interaction between systems can then be enriched by pivoting off this information architecture.Comment: 15 pages, 7 figure

    The contrasting oceanography of the Rhodes Gyre and the Central Black Sea

    Get PDF
    The Rhodes Gyre, a prominent feature of the oceanography of the eastern Mediterranean, is modelled as a vertical, continuous flow, cylindrical reactor illuminated during the day at its upper end. If the Gyre is supposed to be in a steady state whilst the concentrations, C, of a chemical are being measured, the nett rate of formation or consumption of the chemical is given by -w d C/d z + u d C/d r, where w is the upward velocity of the water in the vertical, z , direction and u is the velocity of the water in the radial, r, direction. The behaviour of w and u is analysed to show that the Gyre may be used as a field laboratory in which rates of chemical change may be derived from depth profiles together with values of the surface velocities of the Gyre waters. In contrast, the central Black Sea is modelled as an ideal, strongly stratified sea in which the nett rates of formation or consumption of chemicals under steady state conditions are given by Ds d2C/ds 2, where s is the water density and Ds is an eddy diffusion coefficient. Computations reveal that, given better knowledge of its eddy diffusion coefficients, the Black Sea can also be treated as a field laboratory where rates of reaction mediated by bacteria may be derived from depth profiles

    Small-angle X-ray scattering from GaN nanowires on Si(111): facet truncation rods, facet roughness and Porod's law

    Get PDF
    Small-angle X-ray scattering from GaN nanowires grown on Si(111) is measured in the grazing-incidence geometry and modelled by means of a Monte Carlo simulation that takes into account the orientational distribution of the faceted nanowires and the roughness of their side facets. It is found that the scattering intensity at large wavevectors does not follow Porod's law I(q) ∝ q-4. The intensity depends on the orientation of the side facets with respect to the incident X-ray beam. It is maximum when the scattering vector is directed along a facet normal, reminiscent of surface truncation rod scattering. At large wavevectors q, the scattering intensity is reduced by surface roughness. A root-mean-square roughness of 0.9 nm, which is the height of just 3-4 atomic steps per micrometre-long facet, already gives rise to a strong intensity reduction. open access

    The Role of Plastic Flow in Processes of High-speed Sintering of Ceramic Materials under Pressure

    Get PDF
    A model to describe the kinetics of the compaction of conductive nitride ceramics using electropulse technologies is developed. The relationship between density and pressure is established on the basis of three components of the geometric, plastic and stressed state, which is affects the contact area between the particles. The model takes into account the change in the relative area of the interpartial contacts under the action oftwo mechanisms of mass transfer-diffusion and plastic flow. It is shown that a decrease in the particle size of the powder leads to an in-crease in the diffusion contribution and a decrease in the plastic flow, at all other conditions being equal. And for the case of nano-sized particles, diffusion mass transfer is predominant.Increasing in the heating rate leads to a decrease in the contribution of dif-fusion mass transfer at equal temperatures, as well as to an increase in the temperature of the beginning of shrinkage.The processes of plasma-plasma sintering, high-voltage electro-pulsed consolidation and hot pressing control the same mechanisms, plastic flow and diffusion mass transfer, which do not require, in the first approximation, the influence of the electric current on the properties of materials. Keywords: spark-plasma sintering, high-voltage electrodischarge consolidation, sintering kinetic

    Search for β+\beta^+EC and ECEC processes in 112^{112}Sn

    Full text link
    Limits on β+\beta^+EC (here EC denotes electron capture) and ECEC processes in 112^{112}Sn have been obtained using a 380 cm3^3 HPGe detector and an external source consisting of 53.355 g enriched tin (94.32% of 112^{112}Sn). A limit with 90% C.L. on the 112^{112}Sn half-life of 4.7×10204.7\times 10^{20} y for the ECEC(0ν\nu) transition to the 03+0^+_3 excited state in 112^{112}Cd (1871.0 keV) has been established. This transition is discussed in the context of a possible enhancement of the decay rate by several orders of magnitude given that the ECEC(0ν)(0\nu) process is nearly degenerate with an excited state in the daughter nuclide. Prospects for investigating such a process in future experiments are discussed. The limits on other β+\beta^+EC and ECEC processes in 112^{112}Sn were obtained on the level of (0.68.7)×1020(0.6-8.7)\times 10^{20} y at the 90% C.L.Comment: 14 pages, 4 figure

    The environment effect on operation of in-vessel mirrors for plasma diagnostics in fusion devices

    Get PDF
    First mirrors will be the plasma facing components of optical diagnostic systems in ITER. Mirror surfaces will undergo modification caused by erosion and re-deposition processes [1,2]. As a consequence, the mirror performance may be changed and may deteriorate [3,4]. In the divertor region it may also be obscured by deposition [5-7]. The limited access to in-vessel components of ITER calls for testing the mirror materials in present day devices in order to gather information on the material damage and degradation of the mirror performance, i.e. reflectivity. A dedicated experimental programme, First Mirror Test (FMT), has been initiated at the JET tokamak within the framework Tritium Retention Studies (TRS).Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France).Submitted by B. Schunke on behalf of V. Voytseny
    corecore