118 research outputs found

    Anaesthetic management of a patient with severe aortic stenosis for caesarean section: a case report

    Get PDF
    Aortic stenosis (AS) is an uncommon valvular heart disease presenting during pregnancy. Mild to moderate AS is associated with favorable pregnancy outcome but severe AS can worsen the hemodynamics during the peripartum period and precipitate heart failure, pulmonary edema, thus carrying significant maternal and fetal morbidity and mortality. Percutaneous balloon valvuloplasty can be used as a palliative procedure that allows for completion of pregnancy before definitive repair. We present a case of severe AS posted for caesarean section who was successfully managed under general anaesthesia and had an uneventful recovery

    Deficiency in the endocytic adaptor proteins PHETA1/2 impairs renal and craniofacial development

    Get PDF
    A critical barrier in the treatment of endosomal and lysosomal diseases is the lack of understanding of the in vivo functions of the putative causative genes. We addressed this by investigating a key pair of endocytic adaptor proteins, PH domain-containing endocytic trafficking adaptor 1 and 2 (PHETA1/2; also known as FAM109A/B, Ses1/2, IPIP27A/B), which interact with the protein product of OCRL, the causative gene for Lowe syndrome. Here, we conducted the first study of PHETA1/2 in vivo, utilizing the zebrafish system. We found that impairment of both zebrafish orthologs, pheta1 and pheta2, disrupted endocytosis and ciliogenesis in renal tissues. In addition, pheta1/2 mutant animals exhibited reduced jaw size and delayed chondrocyte differentiation, indicating a role in craniofacial development. Deficiency of pheta1/2 resulted in dysregulation of cathepsin K, which led to an increased abundance of type II collagen in craniofacial cartilages, a marker of immature cartilage extracellular matrix. Cathepsin K inhibition rescued the craniofacial phenotypes in the pheta1/2 double mutants. The abnormal renal and craniofacial phenotypes in the pheta1/2 mutant animals were consistent with the clinical presentation of a patient with a de novo arginine (R) to cysteine (C) variant (R6C) of PHETA1. Expressing the patient-specific variant in zebrafish exacerbated craniofacial deficits, suggesting that the R6C allele acts in a dominant-negative manner. Together, these results provide insights into the in vivo roles of PHETA1/2 and suggest that the R6C variant is contributory to the pathogenesis of disease in the patient

    A novel 65 kDa RNA-binding protein in squid presynaptic terminals

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Neuroscience 166 (2010): 73-83, doi:10.1016/j.neuroscience.2009.12.005.A polyclonal antibody (C4), raised against the head domain of chicken myosin Va, reacted strongly towards a 65 kDa polypeptide (p65) on western blots of extracts from squid optic lobes but did not recognize the heavy chain of squid myosin V. This peptide was not recognized by other myosin Va antibodies, nor by an antibody specific for squid myosin V. In an attempt to identify it, p65 was purified from optic lobes of Loligo plei by cationic exchange and reverse phase chromatography. Several peptide sequences were obtained by mass spectroscopy from p65 cut from SDS-PAGE gels. BLAST analysis and partial matching with ESTs from a Loligo pealei data bank indicated that p65 contains consensus signatures for the hnRNP A/B family of RNA-binding proteins. Centrifugation of post mitochondrial extracts from optic lobes on sucrose gradients after treatment with RNase gave biochemical evidence that p65 associates with cytoplasmic RNP complexes in an RNA-dependent manner. Immunohistochemistry and immunofluorescence studies using the C4 antibody showed partial co-labeling with an antibody against squid synaptotagmin in bands within the outer plexiform layer of the optic lobes and at the presynaptic zone of the stellate ganglion. Also, punctate labeling by the C4 antibody was observed within isolated optic lobe synaptosomes. The data indicate that p65 is a novel RNA-binding protein located to the presynaptic terminal within squid neurons and may have a role in synaptic localization of RNA and its translation or processing.REL, JCR and JEM received financial support from the Fundação de Amparo à Pesquisa do Estado de Sao Paulo (FAPESP), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da FMRP-USP (FAEPA). JAD received financial support from the RI-INBRE Program Grant #P20RR016457 from the Nation Center for Research Resources, NIH, Bethesda, MD. DTPL, LC, SBFT, EJRV and MMAB were recipients of research fellowships from FAPESP and CNPq. REL and JEM received Productivityin- Research fellowships from CNPq

    RNA Modulators of Complex Phenotypes in Mammalian Cells

    Get PDF
    RNA-mediated gene silencing, in the form of RNA interference (RNAi) or microRNAs (miRNAs) has provided novel tools for gene discovery and validation in mammalian cells. Here, we report on the construction and application of a random small RNA expression library for use in identifying small interfering RNA (siRNA) effectors that can modify complex cellular phenotypes in mammalian cells. The library is based in a retroviral vector and uses convergent promoters to produce unique small complementary RNAs. Using this library, we identify a range of small RNA-encoding gene inserts that overcome resistance to 5-fluorouracil (5-FU)- or tumour necrosis factor alpha (TNF-α)- induced cell death in colorectal cancer cells. We demonstrate the utility of this technology platform by identifying a key RNA effector, in the form of a siRNA, which overcomes cell death induced by the chemotherapeutic 5-FU. The technology described has the potential to identify both functional RNA modulators capable of altering physiological systems and the cellular target genes altered by these modulators

    An efficient genetic algorithm for structural RNA pairwise alignment and its application to non-coding RNA discovery in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aligning RNA sequences with low sequence identity has been a challenging problem since such a computation essentially needs an algorithm with high complexities for taking structural conservation into account. Although many sophisticated algorithms for the purpose have been proposed to date, further improvement in efficiency is necessary to accelerate its large-scale applications including non-coding RNA (ncRNA) discovery.</p> <p>Results</p> <p>We developed a new genetic algorithm, Cofolga2, for simultaneously computing pairwise RNA sequence alignment and consensus folding, and benchmarked it using BRAliBase 2.1. The benchmark results showed that our new algorithm is accurate and efficient in both time and memory usage. Then, combining with the originally trained SVM, we applied the new algorithm to novel ncRNA discovery where we compared <it>S. cerevisiae </it>genome with six related genomes in a pairwise manner. By focusing our search to the relatively short regions (50 bp to 2,000 bp) sandwiched by conserved sequences, we successfully predict 714 intergenic and 1,311 sense or antisense ncRNA candidates, which were found in the pairwise alignments with stable consensus secondary structure and low sequence identity (≤ 50%). By comparing with the previous predictions, we found that > 92% of the candidates is novel candidates. The estimated rate of false positives in the predicted candidates is 51%. Twenty-five percent of the intergenic candidates has supports for expression in cell, i.e. their genomic positions overlap those of the experimentally determined transcripts in literature. By manual inspection of the results, moreover, we obtained four multiple alignments with low sequence identity which reveal consensus structures shared by three species/sequences.</p> <p>Conclusion</p> <p>The present method gives an efficient tool complementary to sequence-alignment-based ncRNA finders.</p

    An RNA Transport System in Candida albicans Regulates Hyphal Morphology and Invasive Growth

    Get PDF
    Localization of specific mRNAs is an important mechanism through which cells achieve polarity and direct asymmetric growth. Based on a framework established in Saccharomyces cerevisiae, we describe a She3-dependent RNA transport system in Candida albicans, a fungal pathogen of humans that grows as both budding (yeast) and filamentous (hyphal and pseudohyphal) forms. We identify a set of 40 mRNAs that are selectively transported to the buds of yeast-form cells and to the tips of hyphae, and we show that many of the genes encoded by these mRNAs contribute to hyphal development, as does the transport system itself. Although the basic system of mRNA transport is conserved between S. cerevisiae and C. albicans, we find that the cargo mRNAs have diverged considerably, implying that specific mRNAs can easily move in and out of transport control over evolutionary timescales. The differences in mRNA cargos likely reflect the distinct selective pressures acting on the two species

    Principles of mRNA transport in yeast

    Get PDF
    mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons
    corecore