214 research outputs found

    Eddy diffusivity in convective hydromagnetic systems

    Full text link
    An eigenvalue equation, for linear instability modes involving large scales in a convective hydromagnetic system, is derived in the framework of multiscale analysis. We consider a horizontal layer with electrically conducting boundaries, kept at fixed temperatures and with free surface boundary conditions for the velocity field; periodicity in horizontal directions is assumed. The steady states must be stable to short (fast) scale perturbations and possess symmetry about the vertical axis, allowing instabilities involving large (slow) scales to develop. We expand the modes and their growth rates in power series in the scale separation parameter and obtain a hierarchy of equations, which are solved numerically. Second order solvability condition yields a closed equation for the leading terms of the asymptotic expansions and respective growth rate, whose origin is in the (combined) eddy diffusivity phenomenon. For about 10% of randomly generated steady convective hydromagnetic regimes, negative eddy diffusivity is found.Comment: 18 pages. Added numerical reults. Submitted to European Physical Journal

    Carbon Ignition in Type Ia Supernovae: II. A Three-Dimensional Numerical Model

    Full text link
    The thermonuclear runaway that culminates in the explosion of a Chandrasekhar mass white dwarf as a Type Ia supernova begins centuries before the star actually explodes. Here, using a 3D anelastic code, we examine numerically the convective flow during the last minute of that runaway, a time that is crucial in determining just where and how often the supernova ignites. We find that the overall convective flow is dipolar, with the higher temperature fluctuations in an outbound flow preferentially on one side of the star. Taken at face value, this suggests an asymmetric ignition that may well persist in the geometry of the final explosion. However, we also find that even a moderate amount of rotation tends to fracture this dipole flow, making ignition over a broader region more likely. Though our calculations lack the resolution to study the flow at astrophysically relevant Rayleigh numbers, we also speculate that the observed dipolar flow will become less organized as the viscosity becomes very small. Motion within the dipole flow shows evidence of turbulence, suggesting that only geometrically large fluctuations (~1 km) will persist to ignite the runaway. We also examine the probability density function for the temperature fluctuations, finding evidence for a Gaussian, rather than exponential distribution, which suggests that ignition sparks may be strongly spatially clustered.Comment: 16 pages, 9 figures, submitted to ApJ. A high resolution version of this paper, as well as movies, can be found at http://www.ucolick.org/~mqk/Carbo

    Differential rotation in giant planets maintained by density-stratified turbulent convection

    Full text link
    The zonal winds on the surfaces of giant planets vary with latitude. Jupiter and Saturn, for example, have several bands of alternating eastward (prograde) and westward (retrograde) jets relative to the angular velocity of their global magnetic fields. These surface wind profiles are likely manifestations of the variations in depth and latitude of angular velocity deep within the liquid interiors of these planets. Two decades ago it was proposed that this differential rotation could be maintained by vortex stretching of convective fluid columns that span the interiors of these planets from the northern hemisphere surface to the southern hemisphere surface. This now classic mechanism explains the differential rotation seen in laboratory experiments and in computer simulations of, at best, weakly turbulent convection in rotating constant-density fluid spheres. However, these experiments and simulations are poor approximations for the density-stratified strongly-turbulent interiors of giant planets. The long thin global convective columns predicted by the classic geostrophic theory for these planets would likely not develop. Here we propose a much more robust mechanism for maintaining differential rotation in radius based on the local generation of vorticity as rising plumes expand and sinking plumes contract. Our high-resolution two-dimensional computer simulations demonstrate how this mechanism could maintain either prograde or retrograde surface winds in the equatorial region of a giant planet depending on how the density scale height varies with depth.Comment: Geophysical and Astrophysical Fluid Dynamics, in pres

    Gravity Waves in the Sun

    Full text link
    We present numerical simulations of penetrative convection and gravity wave excitation in the Sun. Gravity waves are self-consistently generated by a convective zone overlying a radiative interior. We produce power spectra for gravity waves in the radiative region as well as estimates for the energy flux of gravity waves below the convection zone. We calculate a peak energy flux in waves below the convection zone to be three orders of magnitude smaller than previous estimates for m=1. The simulations show that the linear dispersion relation is a good approximation only deep below the convective-radiative boundary. Both low frequency propagating gravity waves as well as higher frequency standing modes are generated; although we find that convection does not continually drive the standing g-mode frequencies.Comment: 22 pages, 14 figures, submitted to MNRA

    Can the Earth's dynamo run on heat alone?

    Get PDF
    The power required to drive the geodynamo places significant constraints on the heat passing across the core-mantle boundary and the Earth's thermal history. Calculations to date have been limited by inaccuracies in the properties of liquid iron mixtures at core pressures and temperatures. Here we re-examine the problem of core energetics in the light of new first-principles calculations for the properties of liquid iron. There is disagreement on the fate of gravitational energy released by contraction on cooling. We show that only a small fraction of this energy, that associated with heating resulting from changes in pressure, is available to drive convection and the dynamo. This leaves two very simple equations in the cooling rate and radioactive heating, one yielding the heat flux out of the core and the other the entropy gain of electrical and thermal dissipation, the two main dissipative processes. This paper is restricted to thermal convection in a pure iron core; compositional convection in a liquid iron mixture is considered in a companion paper. We show that heat sources alone are unlikely to be adequate to power the geodynamo because they require a rapid secular cooling rate, which implies a very young inner core, or a combination of cooling and substantial radioactive heating, which requires a very large heat flux across the core-mantle boundary. A simple calculation with no inner core shows even higher heat fluxes are required in the absence of latent heat before the inner core formed

    Mode analysis of numerical geodynamo models

    Full text link
    It has been suggested in Hoyng (2009) that dynamo action can be analysed by expansion of the magnetic field into dynamo modes and statistical evaluation of the mode coefficients. We here validate this method by analysing a numerical geodynamo model and comparing the numerically derived mean mode coefficients with the theoretical predictions. The model belongs to the class of kinematically stable dynamos with a dominating axisymmetric, antisymmetric with respect to the equator and non-periodic fundamental dynamo mode. The analysis requires a number of steps: the computation of the so-called dynamo coefficients, the derivation of the temporally and azimuthally averaged dynamo eigenmodes and the decomposition of the magnetic field of the numerical geodynamo model into the eigenmodes. For the determination of the theoretical mode excitation levels the turbulent velocity field needs to be projected on the dynamo eigenmodes. We compare the theoretically and numerically derived mean mode coefficients and find reasonably good agreement for most of the modes. Some deviation might be attributable to the approximation involved in the theory. Since the dynamo eigenmodes are not self-adjoint a spectral interpretation of the eigenmodes is not possible

    A Lattice Study of Quark and Glue Momenta and Angular Momenta in the Nucleon

    Get PDF
    We report a complete calculation of the quark and glue momenta and angular momenta in the proton. These include the quark contributions from both the connected and disconnected insertions. The quark disconnected insertion loops are computed with Z4Z_4 noise, and the signal-to-noise is improved with unbiased subtractions. The glue operator is comprised of gauge-field tensors constructed from the overlap operator. The calculation is carried out on a 163×2416^3 \times 24 quenched lattice at β=6.0\beta = 6.0 for Wilson fermions with κ=0.154,0.155\kappa=0.154, 0.155, and 0.15550.1555 which correspond to pion masses at 650,538650, 538, and 478478~MeV, respectively. The chirally extrapolated uu and dd quark momentum/angular momentum fraction is found to be 0.64(5)/0.70(5)0.64(5)/0.70(5), the strange momentum/angular momentum fraction is 0.024(6)/0.023(7)0.024(6)/0.023(7), and that of the glue is 0.33(6)/0.28(8)0.33(6)/0.28(8). The previous study of quark spin on the same lattice revealed that it carries a fraction of 0.25(12)0.25(12) of proton spin. The orbital angular momenta of the quarks are then obtained from subtracting the spin from their corresponding angular momentum components. We find that the quark orbital angular momentum constitutes 0.47(13)0.47(13) of the proton spin with almost all of it coming from the disconnected insertions.Comment: Renormalization section is expanded to include more details. There are slight changes in the final numbers. A few modification and corrections are made in the rest of the tex

    Physical processes leading to surface inhomogeneities: the case of rotation

    Full text link
    In this lecture I discuss the bulk surface heterogeneity of rotating stars, namely gravity darkening. I especially detail the derivation of the omega-model of Espinosa Lara & Rieutord (2011), which gives the gravity darkening in early-type stars. I also discuss the problem of deriving gravity darkening in stars owning a convective envelope and in those that are members of a binary system.Comment: 23 pages, 11 figure, Lecture given to the school on the cartography of the Sun and the stars (May 2014 in Besan\c{c}on), to appear in LNP, Neiner and Rozelot edts V2: typos correcte

    Why dynamos are prone to reversals

    Full text link
    In a recent paper (Phys. Rev. Lett. 94 (2005), 184506; physics/0411050) it was shown that a simple mean-field dynamo model with a spherically symmetric helical turbulence parameter alpha can exhibit a number of features which are typical for Earth's magnetic field reversals. In particular, the model produces asymmetric reversals, a positive correlation of field strength and interval length, and a bimodal field distribution. All these features are attributable to the magnetic field dynamics in the vicinity of an exceptional point of the spectrum of the non-selfadjoint dynamo operator. The negative slope of the growth rate curve between the nearby local maximum and the exceptional point makes the system unstable and drives it to the exceptional point and beyond into the oscillatory branch where the sign change happens. A weakness of this reversal model is the apparent necessity to fine-tune the magnetic Reynolds number and/or the radial profile of alpha. In the present paper, it is shown that this fine-tuning is not necessary in the case of higher supercriticality of the dynamo. Numerical examples and physical arguments are compiled to show that, with increasing magnetic Reynolds number, there is strong tendency for the exceptional point and the associated local maximum to move close to the zero growth rate line. Although exemplified again by the spherically symmetric alpha^2 dynamo model, the main idea of this ''self-tuning'' mechanism of saturated dynamos into a reversal-prone state seems well transferable to other dynamos. As a consequence, reversing dynamos might be much more typical and may occur much more frequently in nature than what could be expected from a purely kinematic perspective.Comment: 11 pages, 10 figure
    • …
    corecore