838 research outputs found

    Supercritical Light Water Reactor (SCLWR) with Intermediate Heat Exchanger (IHX)

    Get PDF

    New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products

    Get PDF
    In this paper, we study the impact of the inclusion of the recently measured beta decay properties of the 102;104;105;106;107^{102;104;105;106;107}Tc, 105^{105}Mo, and 101^{101}Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes 235,238^{235, 238}U, and 239,241^{239,241}Pu. These actinides are the main contributors to the fission processes in Pressurized Water Reactors. The beta feeding probabilities of the above-mentioned Tc, Mo and Nb isotopes have been found to play a major role in the γ\gamma component of the decay heat of 239^{239}Pu, solving a large part of the γ\gamma discrepancy in the 4 to 3000\,s range. They have been measured using the Total Absorption Technique (TAS), avoiding the Pandemonium effect. The calculations are performed using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of 235^{235}U, 239,241^{239,241}Pu and in particular of 238^{238}U for which no measurement has been published yet. We conclude that new TAS measurements are mandatory to improve the reliability of the predicted spectra.Comment: 10 pages, 2 figure

    Antineutrino emission and gamma background characteristics from a thermal research reactor

    Full text link
    The detailed understanding of the antineutrino emission from research reactors is mandatory for any high sensitivity experiments either for fundamental or applied neutrino physics, as well as a good control of the gamma and neutron backgrounds induced by the reactor operation. In this article, the antineutrino emission associated to a thermal research reactor: the OSIRIS reactor located in Saclay, France, is computed in a first part. The calculation is performed with the summation method, which sums all the contributions of the beta decay branches of the fission products, coupled for the first time with a complete core model of the OSIRIS reactor core. The MCNP Utility for Reactor Evolution code was used, allowing to take into account the contributions of all beta decayers in-core. This calculation is representative of the isotopic contributions to the antineutrino flux which can be found at research reactors with a standard 19.75\% enrichment in 235^{235}U. In addition, the required off-equilibrium corrections to be applied to converted antineutrino energy spectra of uranium and plutonium isotopes are provided. In a second part, the gamma energy spectrum emitted at the core level is provided and could be used as an input in the simulation of any reactor antineutrino detector installed at such research facilities. Furthermore, a simulation of the core surrounded by the pool and the concrete shielding of the reactor has been developed in order to propagate the emitted gamma rays and neutrons from the core. The origin of these gamma rays and neutrons is discussed and the associated energy spectrum of the photons transported after the concrete walls is displayed.Comment: 14 pages, 11 figures, Data in Appendix A and B (13 pages

    Accelerating, hyperaccelerating, and decelerating networks

    Get PDF
    Many growing networks possess accelerating statistics where the number of links added with each new node is an increasing function of network size so the total number of links increases faster than linearly with network size. In particular, biological networks can display a quadratic growth in regulator number with genome size even while remaining sparsely connected. These features are mutually incompatible in standard treatments of network theory which typically require that every new network node possesses at least one connection. To model sparsely connected networks, we generalize existing approaches and add each new node with a probabilistic number of links to generate either accelerating, hyperaccelerating, or even decelerating network statistics in different regimes. Under preferential attachment for example, slowly accelerating networks display stationary scale-free statistics relatively independent of network size while more rapidly accelerating networks display a transition from scale-free to exponential statistics with network growth. Such transitions explain, for instance, the evolutionary record of single-celled organisms which display strict size and complexity limits

    Reactor Simulation for Antineutrino Experiments using DRAGON and MURE

    Full text link
    Rising interest in nuclear reactors as a source of antineutrinos for experiments motivates validated, fast, and accessible simulations to predict reactor fission rates. Here we present results from the DRAGON and MURE simulation codes and compare them to other industry standards for reactor core modeling. We use published data from the Takahama-3 reactor to evaluate the quality of these simulations against the independently measured fuel isotopic composition. The propagation of the uncertainty in the reactor operating parameters to the resulting antineutrino flux predictions is also discussed.Comment: This version has increased discussion of uncertaintie

    One-dimensional magnetic fluctuations in the spin-2 triangular lattice \alpha-NaMnO2

    Full text link
    The S=2 anisotropic triangular lattice alpha-NaMnO2 is studied by neutron inelastic scattering. Antiferromagnetic order occurs at T ~ 45 K with opening of a spin gap. The spectral weight of the magnetic dynamics above the gap (Delta ~ 7.5 meV) has been analysed by the single-mode approximation. Excellent agreement with the experiment is achieved when a dominant exchange interaction (|J|/k_B ~ 73 K), along the monoclinic b-axis and a sizeable easy-axis magnetic anisotropy (|D|/k_B ~ 3 K) are considered. Despite earlier suggestions for two-dimensional spin interactions, the dynamics illustrate strongly coupled antiferromagnetic S=2 chains and cancellation of the interchain exchange due to the lattice topology. alpha-NaMnO2 therefore represents a model system where the geometric frustration is resolved through the lowering of the dimensionality of the spin interactions.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    The use of 3D printing in the development of gaseous radiation detectors

    Get PDF
    Fused Deposition Modelling has been used to produce a small, single wire, Iarocci-style drift tube to demonstrate the feasibility of using the Additive Manufacturing technique to produce cheap detectors, quickly. Recent technological developments have extended the scope of Additive Manufacturing, or 3D printing, to the possibility of fabricating Gaseous Radiation Detectors, such as Single Wire Proportional Counters and Time Projection Chambers. 3D printing could allow for the production of customisable, modular detectors; that can be easily created and replaced and the possibility of printing detectors on-site in remote locations and even for outreach within schools. The 3D printed drift tube was printed using Polylactic acid to produce a gas volume in the shape of an inverted triangular prism; base length of 28 mm, height 24.25 mm and tube length 145 mm. A stainless steel anode wire was placed in the centre of the tube, mid-print. P5 gas (95% Argon, 5% Methane) was used as the drift gas and a circuit was built to capacitively decouple signals from the high voltage. The signal rate and average pulse height of cosmic ray muons were measured over a range of bias voltages to characterise and prove correct operation of the printed detector

    Investigation of the 6He cluster structures

    Full text link
    The 4He+2n and t+t clustering of the 6He ground state were investigated by means of the transfer reaction 6He(p,t)4He at 25 MeV/nucleon. The experiment was performed in inverse kinematics at GANIL with the SPEG spectrometer coupled to the MUST array. Experimental data for the transfer reaction were analyzed by a DWBA calculation including the two neutrons and the triton transfer. The couplings to the 6He --> 4He + 2n breakup channels were taken into account with a polarization potential deduced from a coupled-discretized-continuum channels analysis of the 6He+1H elastic scattering measured at the same time. The influence on the calculations of the 4He+t exit potential and of the triton sequential transfer is discussed. The final calculation gives a spectroscopic factor close to one for the 4He+2n configuration as expected. The spectroscopic factor obtained for the t+t configuration is much smaller than the theoretical predictions.Comment: 10 pages, 11 figures, accepted in PR
    corecore