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Abstract— Now, compound semiconductors are very appealing 

for hard X-ray room-temperature detectors for medical and 
astrophysical applications. Despite the attractive properties of 
compound semiconductors, such as high atomic number, high 
density, wide band gap, low chemical reactivity and long-term 
stability, poor hole and electron mobility-lifetime products 
degrade the energy resolution of these detectors. The main 
objective of the present study is in development of a 
mathematical model of the process of the charge induction in a 
cylindrical geometry with accounting for the charge carrier 
trapping. The formulae for the moments of the distribution 
function of the induced charge and the formulae for the mean 
amplitude and the variance of the signal at the output of the 
semiconductor detector with a cylindrical geometry were derived. 
It was shown that the power series expansions of the detector 
amplitude and the variance in terms of the inverse bias voltage 
allow determining the Fano factor, electron mobility lifetime 
product, and the nonuniformity level of the trap density of the 
semiconductor material.

Index Terms— charge induction, charge carriers trapping,
compound semiconductors, cylindrical geometry, energy 
resolution.

I. INTRODUCTION

OW, compound semiconductors are very appealing for
hard X-ray room-temperature detectors for medical and 

astrophysical applications. Despite the attractive properties of 
compound semiconductors, such as high atomic number, high 
density, wide band gap, low chemical reactivity and long-term
stability, poor hole and electron mobility-lifetime products 
degrade the energy resolution of these detectors. The process 
of trapping in imperfections introduced during semiconductor 
crystal growth, such as impurity atoms, vacancies, and 
structural irregularities has a pronounced effect on the charge 
carrier transport and leads to the peak broadening. The main 
goal of the theory of radiation detectors is in putting forward 
mathematical models that adequately describe the processes 
occurring in the transformation of the energy of impinging 
radiation into the output detector signal. The energy resolution 
of a semiconductor detector depends on the fluctuations in the 
process of charge carriers generation, in the process of charge 
induction on the detector electrodes, caused by charge carriers 
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trapping, on the fluctuations of the trapping centers 
concentration in the detector volume, on the fluctuations in the 
gain of amplifier and on the electronic noise. The main 
objective of the present study is the development of a 
mathematical model of the process of the charge induction in a 
cylindrical geometry with accounting for the charge carrier 
trapping. In this work, theoretical consideration of the 
stochastic process of the charge induction in cylindrical 
geometry with accounting for the charge carrier trapping was 
considered.
As in compound semiconductor detectors the electron mobility 
greatly exceeds the hole mobility, significant improvement in 
the energy resolution can be achieved by discarding the hole 
with the poorer transport properties. One way is in using 
special detector geometries to eliminate the contribution of 
holes. Two detector geometries that offer a marked increase in 
field strength near the collecting electrode are hemispherical 
and coaxial geometries. Theoretical consideration of the 
stochastic process of charge induction in a hemispherical 
geometry with accounting for electron trapping was 
considered in [1]. The main objective of the present study is in 
development of a mathematical model of the process of charge 
induction in a cylindrical geometry with accounting for the 
charge carrier trapping. The general formulae for the moments 
of the distribution function of the induced charge on the 
electrodes of a detector with a cylindrical geometry are 
applicable to all coaxial X-ray detectors. For example, they are 
applicable to the Reverse-Electrode Germanium detectors 
(REGe) with the ion-implanted boron p-type outer electrode, 
and the diffused lithium n-type inner electrode.

II. MOMENTS OF THE INDUCED CHARGE DISTRIBUTION 
FUNCTION IN COAXIAL DETECTORS

In coaxial X-ray detectors, the charge on the detector’s 
electrodes is induced mainly in the very small high electric 
field region near the inner electrode. Thus, to eliminate the 
contribution of holes, the zero potential must be applied to the 
outer electrode and the potential V to the inner electrode, and 
X-rays must enter the detector from the outer electrode.
For low-energy X-rays the dominant interaction with the 
matter is a photoelectric absorption. If the length of the active 
region of the detector is much greater than the mean free path 
length of X-rays in semiconductor material, then we can 
assume that all X-rays interact with the detector close to the 
outer electrode. As the thickness of a detector is usually much 
greater than the size of the volume of the photoelectron energy 
conversion into the energy of electron-hole pairs, then we can 
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consider that all electron-hole pairs are produced at the point 
of the X-quantum interaction, i.e. close to the outer electrode, 
and only electrons determine the detector signal. 
The coaxial geometry on the one hand eliminates the 
contribution of holes, but on the other hand increases the 
fluctuations of the induced charge on the detector electrodes. 
These fluctuations are determined by the process of electron 
trapping in imperfections, impurity atoms, vacancies, and 
structural irregularities. As an electron spends most of the time 
in the low electric field region, the process of electron trapping 
has a pronounced effect on the process of charge induction on 
the detector electrodes. For the best performance of the 
coaxial detector the correct ratio of the outer to inner radii and 
the operating voltage must be chosen according to the electron 
mobility-lifetime product. 
Let us consider a coaxial detector with the zero electric 
potential applied to the outer electrode of the radius 2R , and 
the electric potential V  applied to the inner electrode of the 
radius 1R . In [2], the general formulae for the moments of the 
distribution function of the relative charge induced on the 
detector electrodes were derived 
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of the relative induced charge on the detector electrodes. 
In the above formulae, according to the Ramo’s theorem [3], 
the relative induced charge on the detector electrodes is 
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where )()( 2Rr    is the electric potential difference 
between the electron absorption point at the radius r  from the 
center and the creation point, which for low energy X-rays 
coincides with the radius of the outer electrode 2R . 
The dimensionless function )(qF  is the analogue of the 
optical path length, and is equal to the ratio of the time to 
induce the relative induced charge on the detector electrodes 
q  to the mean electron trapping time, usually referred to as 

the electron lifetime e . 

The function )(qF  has the form of the line integral along the 
electric field line 
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where )(sE  is the magnitude of the electric field strength, 

)(se  is the electron mobility, and )(se  the electron 
lifetime at the distance s  from the electron creation point; 

)(qs  is the inverse function of the relative induced charge on 
the detector electrodes (5). 

The electric potential and the magnitude of the electric 
field strength in a coaxial detector at the radius r  from the 
center are 
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For our case, the relative induced charge on the detector 
electrodes (5) is determined by the equation 
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and the inverse function of )(rq  is 
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In the formula (10), the dimensionless parameter 
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is the first main parameter that characterizes the coaxial 
geometry of a given detector. 
After integration along the electric field line, the function 
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is the second main dimensionless parameter that includes the 
physical characteristics of the coaxial detector and varies with 
the applied bias voltage V . 
The average value of the relative induced charge on the 
electrodes of a coaxial detector can be received by expanding 
integrand in (2) in power series of the parameter   
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After term-by-term integration of the binomial expansion for 
power n  and rearranging terms, the average value of the 
relative induced charge on the electrodes of a coaxial detector 
in power series of the parameter   has the form 
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where the expansion coefficients are determined by the 
formula 
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In the formula (16)  xbbaaF srsr ;,...;,... 11  is the 

generalized hypergeometric series [4], )(x  is the digamma 

function, and 56649 0.57721=  is the Euler’s constant 
[5]. 
The first several coefficients of expansion are 
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In a similar way, the second moment of the distribution 
function of the relative induced charge on the electrodes of a 
coaxial detector has the form 
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where  xbbaaF srsr ;,...;,... 11  is the generalized 
hypergeometric series [4]. 
The first several coefficients of expansion are 
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In the limit 2R  and 1R , providing that 

DRR  12 , the formulae (15) and (21) reduce to the 

formulae for the first two moments of the distribution function 
of the induced charge in a planar detector with uniform 
electric field [6]. 

III. THE BIAS DEPENDENCE OF THE VARIANCE OF COAXIAL 
DETECTORS 

In [7], the general formulae for the mean value and the 
variance of the semiconductor detector signal were derived. In 
the case, when all electron-hole pairs are produced at the point 
of the soft X-quantum interaction close to the outer electrode, 
and the detector signal is determined only by electrons, the 
dependence of the mean value and the variance of the 
semiconductor detector signal on the bias voltage V  have 
forms 
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where 0E  is the energy of incident monoenergetic particles, 

  is the effective energy to produce one electron-hole pair, 

F  is the Fano factor, g  and 
222 / ggg    are the mean 

value and the relative variance of the electronic amplifier gain, 
2
noise  is the electronic noise at the output of spectrometer. In 

the formulae (27) and (28) 
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With these results, and after rearranging in powers of 
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In all above formulae only the first order of small 

parameters 1F , 1/
2122
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 and 

1/ 222  g
egg   are retained. 

The formulae (38) - (45) in the limit 2R  and 1R , 

providing that DRR  12 , reduce to the formulae for the 
planar detector with uniform electric field [8]. 

The coefficients of expansions (35) and (36) allow 
determining characteristics of a coaxial detector from 
experimental data. 

IV. CONCLUSION 

The exact mathematical description of the processes in a 
semiconductor coaxial detector at registration of low energy 
X-rays gives the correct formulae for the mean and the 
variance of the output signal of a detector. It was shown that 
the power series expansions of the detector amplitude and the 
variance in terms of the inverse bias voltage allow determining 
the characteristics of a coaxial detector. These formulae are 
useful for analysis of the influence of different factors on the 
energy resolution of semiconductor coaxial detectors. 
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With these results, and after rearranging in powers of 

1 e  (34) 
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providing that DRR  12 , reduce to the formulae for the 
planar detector with uniform electric field [8]. 

The coefficients of expansions (35) and (36) allow 
determining characteristics of a coaxial detector from 
experimental data. 

IV. CONCLUSION 

The exact mathematical description of the processes in a 
semiconductor coaxial detector at registration of low energy 
X-rays gives the correct formulae for the mean and the 
variance of the output signal of a detector. It was shown that 
the power series expansions of the detector amplitude and the 
variance in terms of the inverse bias voltage allow determining 
the characteristics of a coaxial detector. These formulae are 
useful for analysis of the influence of different factors on the 
energy resolution of semiconductor coaxial detectors. 
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