69 research outputs found

    Development of a short form of Mini-Mental State Examination for the screening of dementia in older adults with a memory complaint: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary care physicians need a brief and accurate screening test of dementia. The objective of this study was to determine whether a short form of Mini-Mental State Examination (SMMSE) was as accurate as the Mini-Mental State Examination (MMSE) in screening dementia.</p> <p>Methods</p> <p>Based on case control design study, SMMSE and MMSE were assessed in 184 community-dwelling older adults (mean age 81.3 ± 6.5 years, 71.7% women) with memory complaint sent by their primary care physician to a memory clinic. Included participants were separated into two groups: cognitively healthy individuals and demented individuals.</p> <p>Results</p> <p>The trade-off between sensitivity and specificity of the SMMSE for clinically diagnosed dementia was 4. Based on the cut-off value ≤ 4 for SMMSE and a cut-off value ≤ 24 for MMSE, the sensitivity of both tests was similar (89.5% for SMMSE versus 90.0% for MMSE), whereas the specificity, the positive predictive values (PPV) and the negative predictive values (NPV) were higher for SMMSE compared to MMSE (85.4 versus 75.5% for specificity; 95.5% versus 92.8% for PPV; 70.0 versus 68.9 for NPV). The positive and negative Likehood Ratio (LR) of SMMSE were higher than those of MMSE (respectively, 6.1 versus 3.7; 8.1 versus 7.7). In addition, odds ratio (OR) for dementia was higher for the SMMSE compared to the MMSE (OR = 49.8 with 95% confident interval (CI) [18.0; 137.8] versus OR = 28.6 with 95% CI [11.6; 70.3]).</p> <p>Conclusions</p> <p>SMMSE seems to be an efficient short screening test for dementia among community-dwelling older adults with a memory complaint. Further research is needed to confirm its predictive values among unselected primary care older patients.</p

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Molecular imaging of hypoxia with radiolabelled agents

    Get PDF
    Tissue hypoxia results from an inadequate supply of oxygen (O2) that compromises biological functions. Structural and functional abnormalities of the tumour vasculature together with altered diffusion conditions inside the tumour seem to be the main causes of tumour hypoxia. Evidence from experimental and clinical studies points to a role for tumour hypoxia in tumour propagation, resistance to therapy and malignant progression. This has led to the development of assays for the detection of hypoxia in patients in order to predict outcome and identify patients with a worse prognosis and/or patients that would benefit from appropriate treatments. A variety of invasive and non-invasive approaches have been developed to measure tumour oxygenation including oxygen-sensitive electrodes and hypoxia marker techniques using various labels that can be detected by different methods such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), autoradiography and immunohistochemistry. This review aims to give a detailed overview of non-invasive molecular imaging modalities with radiolabelled PET and SPECT tracers that are available to measure tumour hypoxia

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope

    Get PDF
    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models

    Early phase clinical trials of anticancer agents in children and adolescents — an ITCC perspective

    Get PDF
    In the past decade, the landscape of drug development in oncology has evolved dramatically; however, this paradigm shift remains to be adopted in early phase clinical trial designs for studies of molecularly targeted agents and immunotherapeutic agents in paediatric malignancies. In drug development, prioritization of drugs on the basis of knowledge of tumour biology, molecular 'drivers' of disease and a drug's mechanism of action, and therapeutic unmet needs are key elements; these aspects are relevant to early phase paediatric trials, in which molecular profiling is strongly encouraged. Herein, we describe the strategy of the Innovative Therapies for Children with Cancer (ITCC) Consortium, which advocates for the adoption of trial designs that enable uninterrupted patient recruitment, the extrapolation from studies in adults when possible, and the inclusion of expansion cohorts. If a drug has neither serious dose-related toxicities nor a narrow therapeutic index, then studies should generally be started at the adult recommended phase II dose corrected for body surface area, and act as dose-confirmation studies. The use of adaptive trial designs will enable drugs with promising activity to progress rapidly to randomized studies and, therefore, will substantially accelerate drug development for children and adolescents with cancer

    A phosphodiester bridge between two arabinose residues as a structural element of an extracellular glycoprotein of Volvox carteri

    Get PDF
    The sulphated glycoprotein SSG 185 is the monomeric precursor of a highly aggregated structural element in the extracellular matrix of the multicellular green alga Volvox carteri. A phosphodiester of arabinose was isolated from a saccharide fragment of SSG 185. The structure of this phosphodiester was investigated by methylation analysis, 13C-NMR, photometric methods and enzymatic assays and identified as D-Araiota-5-phospho-5-D-Araiota. The function of this phosphodiester bridge as a crosslink of different carbohydrate chains in SSG 185 is discussed
    corecore