190 research outputs found

    A novel approach in the WIMP quest: Cross-Correlation of Gamma-Ray Anisotropies and Cosmic Shear

    Get PDF
    Both cosmic shear and cosmological gamma-ray emission stem from the presence of Dark Matter (DM) in the Universe: DM structures are responsible for the bending of light in the weak lensing regime and those same objects can emit gamma-rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma-rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma-rays produced by the annihilation/decay of Weakly Interacting Massive Particle (WIMP) DM, as well as from astrophysical sources. We show that this observable provides novel information on the composition of the Extra-galactic Gamma-ray Background (EGB), since the amplitude and shape of the cross-correlation signal strongly depends on which class of source is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi-LAT data with forthcoming galaxy surveys, like Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak lensing observables are indeed due to particle DM matter and not to possible modifications of General Relativity.Comment: 6 pages, 12 figures. v2: Matches version published in ApJ Lett. Text reorganized, appendix removed (part of the discussion is now in the main text), no major change

    Anisotropy probe of galactic and extra-galactic Dark Matter annihilations

    Get PDF
    We study the flux and the angular power spectrum of gamma-rays produced by Dark Matter (DM) annihilations in the Milky Way (MW) and in extra-galactic halos. The annihilation signal receives contributions from: a) the smooth MW halo, b) resolved and unresolved substructures in the MW, c) external DM halos at all redshifts, including d) their substructures. Adopting a self-consistent description of local and extra-galactic substructures, we show that the annihilation flux from substructures in the MW dominates over all the other components for angles larger than O(1) degrees from the Galactic Center, unless an extreme prescription is adopted for the substructures concentration. We also compute the angular power spectrum of gamma-ray anisotropies and find that, for an optimistic choice of the particle physics parameters, an interesting signature of DM annihilations could soon be discovered by the Fermi LAT satellite at low multipoles, l<100, where the dominant contribution comes from MW substructures with mass M>10^4 solar masses. For the substructures models we have adopted, we find that the contribution of extra-galactic annihilations is instead negligible at all scales.Comment: 14 pages, 7 figure

    WIMP particle physics and astrophysics with direct detection and neutrino telescope data

    Get PDF
    With positive signals from multiple direct detection experiments it will, in principle, be possi- ble to measure the mass and cross sections of weakly-interacting massive particle (WIMP) dark matter. Recent work has shown that, with a polynomial parameterisation of the WIMP speed dis- tribution, it is possible to make an unbiased measurement of the WIMP mass, without making any astrophysical assumptions. However, direct detection experiments are not sensitive to low-speed WIMPs and, therefore, any model-independent approach will lead to a bias in the cross section. This problem can be solved with the addition of measurements of the flux of neutrinos from the Sun. This is because the flux of neutrinos produced from the annihilation of WIMPs which have been gravitationally captured in the Sun is sensitive to low-speed WIMPs. Using mock data from next-generation direct detection experiments and from the IceCube neutrino telescope, we show that the complementary information from IceCube on low-speed WIMPs breaks the degeneracy between the cross section and the speed distribution. This allows unbiased determinations of the WIMP mass and spin-independent and spin-dependent cross sections to be made, and the speed distribution to be reconstructed. We use two parameterisations of the speed distribution: binned and polynomial. While the polynomial parameterisation can encompass a wider range of speed distributions, this leads to larger uncertainties in the particle physics parameters

    Primary Subcutaneous B-cell Lymphoma : Case Report and Literature Review

    Get PDF
    Primary cutaneous B-cell lymphomas are defined as malignant B-cell proliferations presenting with cutaneous involvement alone and no evidence of extracutaneous manifestations when complete staging has been performed. It has been shown that the infiltrate in some cases could involve the underlying subcutaneous tissues, but primary localization in this compartment has been rarely reported. We describe here the case of a 53-year-old woman who noticed a nodular lesion on the left shoulder that rapidly enlarged in a few months. The histological and immunophenotypical features were compatible with a subcutaneous B-cell lymphoma. The tumoural mass was confined predominantly to the subcutaneous compartment, as confirmed by computed tomography. No other tumour localizations were found. Thus, primary B-cell lymphoma of the subcutis was diagnosed. We report a review of the literature indicating that B-cell lymphomas that are primarily localized to the subcutaneous tissue represent a very rare modality of presentation with a biological behaviour different from conventional cutaneous B-cell lymphoma

    How to calculate dark matter direct detection exclusion limits that are consistent with gamma rays from annihilation in the Milky Way halo

    Get PDF
    When comparing constraints on the weakly interacting massive particle (WIMP) properties from direct and indirect detection experiments it is crucial that the assumptions made about the dark matter (DM) distribution are realistic and consistent. For instance, if the Fermi-LAT Galactic center GeV gamma-ray excess was due to WIMP annihilation, its morphology would be incompatible with the standard halo model that is usually used to interpret data from direct detection experiments. In this article, we calculate exclusion limits from direct detection experiments using self-consistent velocity distributions, derived from mass models of the Milky Way where the DM halo has a generalized Navarro-Frenk-White profile. We use two different methods to make the mass model compatible with a DM interpretation of the Galactic center gamma-ray excess. First, we fix the inner slope of the DM density profile to the value that best fits the morphology of the excess. Second, we allow the inner slope to vary and include the morphology of the excess in the data sets used to constrain the gravitational potential of the Milky Way. The resulting direct detection limits differ significantly from those derived using the standard halo model, in particular for light WIMPs, due to the differences in both the local DM density and velocity distribution
    corecore