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When comparing constraints on the weakly interacting massive particle (WIMP) properties from direct
and indirect detection experiments it is crucial that the assumptions made about the dark matter (DM)
distribution are realistic and consistent. For instance, if the Fermi-LAT Galactic center GeV gamma-ray
excess was due to WIMP annihilation, its morphology would be incompatible with the standard halo model
that is usually used to interpret data from direct detection experiments. In this article, we calculate exclusion
limits from direct detection experiments using self-consistent velocity distributions, derived from mass
models of the Milky Way where the DM halo has a generalized Navarro-Frenk-White profile. We use two
different methods to make the mass model compatible with a DM interpretation of the Galactic center
gamma-ray excess. First, we fix the inner slope of the DM density profile to the value that best fits the
morphology of the excess. Second, we allow the inner slope to vary and include the morphology of the
excess in the data sets used to constrain the gravitational potential of the Milky Way. The resulting direct
detection limits differ significantly from those derived using the standard halo model, in particular for light
WIMPs, due to the differences in both the local DM density and velocity distribution.

DOI: 10.1103/PhysRevD.94.043516

I. INTRODUCTION

Weakly interacting massive particles (WIMPs) are a
well-motivated dark matter (DM) candidate. They can be
detected directly, via their interactions with nuclei, or
indirectly, via their annihilation products, such as high-
energy gamma rays, neutrinos or antimatter (for reviews
see, e.g., Refs. [1–3]). The signals expected in these
channels depend on different aspects of how DM is
distributed in the Universe: the event rate in direct detection
experiments depends on the local DM density and velocity
distribution, while indirect searches are sensitive to non-
local quantities. In particular, the gamma-ray flux expected
from DM annihilations in a given direction in the sky is
proportional to the line-of-sight integral of the square of the
DM density toward that direction. For this reason, when
comparing results from those two channels, it is essential
that the assumptions made about the DM distribution are
consistent. It is also important that the modeling of the DM
distribution is as realistic as possible.
When direct detection data are used to constrain the

WIMP mass and scattering cross-section, it is customary to

assume the so-called standard halo model (SHM). The
SHM postulates a spherical DM halo for the Milky Way
(MW) with a density profile that scales as ρ ∝ r−2, and an
isotropic Maxwell-Boltzmann speed distribution [4].
However, this is in conflict with numerical simulations,
which produce DM halos that are not exactly spherical and
have speed distributions that can deviate systematically
from the Maxwell-Boltzmann distribution [5–10] (see,
however, Refs. [11–14] for a recent discussion on the
effect of including baryons in the simulations). Also,
simulated halos have density profiles with logarithmic
slopes which vary with radius [15–19], in contrast to the
constant logarithmic slope of the SHM.
A more complete description of the MW relies on

modeling its matter components, i.e., the disk, bulge and
DM halo. The free parameters of such a mass model can be
constrained by means of astrophysical observables, such as
the Oort constants, the local surface density or the micro-
lensing optical depth [20–27]. For spherically symmetric
halos, this approach allows the reconstruction of the phase-
space distribution of DM particles in the MW, Fðx; vÞ.
From the latter it is possible to extract a self-consistent DM
velocity distribution, fðvÞ, that is in agreement with the
inferred gravitational potential of our Galaxy [20].
In this article, we extend previous studies by including

indirect detection data from gamma-ray searches as a
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further constraint in the mass modeling of the MW. As a
case study, we consider the excess of GeV gamma rays
observed close to the Galactic center [28–42] by the Fermi
Large Area Telescope (LAT) as a potential DM signal. The
energy spectrum, morphology and overall normalization of
this excess are consistent with the expectations for WIMP
annihilations. In particular, the excess is roughly spheri-
cally symmetric and the morphology is consistent with a
DM density profile proportional to r−γ , with γ ≈ 1.1 − 1.3
[36,37]. However, the origin of the excess is not yet
established and alternative astrophysical explanations
including cosmic-ray outbursts [43–45], a population of
unresolved millisecond-pulsar-like sources [33,35,46–50],
or additional cosmic-ray sources [51,52] have been con-
sidered. If interpreted in terms of DM annihilations, the
morphology of this excess can determine, up to a certain
degree of accuracy, the inner slope of the DM profile,
thereby adding a valuable piece of information to the
modeling of the gravitational potential of the MW.
Using the MW gravitational potential, we derive the self-

consistent local speed distribution and local DM density.
This allows the computation of the DM event rate in direct
detection experiments, and can be used to extract consistent
exclusion limits on the DM-nucleon scattering cross
section. In this article, we apply this prescription to
calculate consistent exclusion limits from the LUX data
[53]. This procedure permits an unbiased comparison of
experimental results, which is essential when applying
experimental results to specific particle models for DM.
In Sec. II we describe our mass model of the MW, before

outlining how we self-consistently calculate the DM local
velocity distribution in Sec. III. We then derive the resulting
exclusion limits for the LUX experiment in Sec. IV and
conclude in Sec. V.

II. MASS MODELS OF THE MILKY WAY

A mass model of the MW is a description of the different
components of the gravitational potential of our Galaxy
(see Refs. [21–23]). The parameters specifying the different
components can be reconstructed by requiring a good fit to
various data sets including stellar kinematics (such as
rotation curves in the inner Galaxy or velocity dispersion
of halo stars) and microlensing. See Refs. [24–27,54–58],
among others.
In this work, we use the mass model defined in Ref. [20].

Four matter components are considered:
(i) a stellar disk with density ρdðR; zÞ ¼ ðΣd=2zdÞ

expð−R=RdÞsech2ðz=zdÞ, where R is the distance
from the Galactic center, projected on the Galactic
plane, and z is the vertical distance from the
Galactic plane;

(ii) a combined stellar bulge and bar, i.e., ρbbðx;y;zÞ¼
ρbbð0Þ½s−1;85a expð−saÞþexpð−0.5s2bÞ�, where ðx;y;zÞ
are Cartesian coordinates, s2a ¼ ½q2bðx2 þ y2Þ þ
z2�=z2b and s4b ¼ ðx2 þ y2Þ2=x4b þ ðz=zbÞ4;

(iii) interstellar gas, modeled as in Ref. [59];
(iv) a DM halo with a generalized Navarro-Frenk-White

(NFW) profile:

ρχðrÞ ¼ ρsðr=rsÞ−γð1þ r=rsÞγ−3: ð1Þ
The case γ ¼ 1 corresponds to the original NFW
profile [16], which provides a good fit to halos
formed in simulations containing only DM particles.
Adiabatic contraction, as baryons infall, could lead
to a steeper inner profile (e.g. Refs. [60,61]). While
hydrodynamical simulations have recently become
precise enough to reproduce the observed properties
of galaxies [10], the complexity of phenomena like
stellar winds and supernovae feedback are still hard
to model and their interplay with DM is not yet fully
understood [62–64]. The morphology of the excess
from the Galactic centre is consistent with a DM
halo with γ ≈ 1.26 [36,37].

Some parameters in the expressions above (zd, qb, zb and
zb) are fixed to values inferred from astronomical obser-
vations. All the other parameters (Σd, Rd, ρbbð0Þ, ρs and rs)
are allowed to vary.
In this work, we consider three mass models of the MW,

which differ in the assumptions made regarding the inner
logarithmic slope, γ, of the density profile of the DM halo:

(i) a standard NFW halo (dubbed, from now on, simply
“NFW”) with γ ¼ 1. This commonly used profile is
inconsistent with the DM interpretation of the
Galactic center excess. We use it to illustrate the
effects of different assumptions for the distribution
of DM in the MW on the exclusion limits derived
from direct detection data;

(ii) a NFW halo with γ ¼ 1.26 (c.f. Ref. [39]) which we
refer to as “generalized NFW (γ ¼ 1.26)”. Here we
have enforced compatibility with a DM interpreta-
tion of the Galactic center excess by simply fixing
the inner slope to the value which best fits the
morphology of the excess;

(iii) a NFW halo with a free γ, referred to as “generalized
NFW (free γ)”. In this case we include the morphol-
ogy of the Galactic center excess in the data used to
constrain the mass model (as discussed in detail
below). This is a more sophisticated way of ensuring
compatibility. As well as including the uncertainty in
the inner slope, it allows for possible degeneracies in
the parameters of the mass model.

The last two cases were not previously considered in
Ref. [20]. Note that all three scenarios assume a spherical
DM halo. Reference [55] has shown that the effect of
dropping the assumption of spherical symmetry on the
parameters of the MW mass model is subdominant to the
uncertainties which arise from the observational data.
We have performed Bayesian scans over the free

parameters [10 for the “NFW” and “generalized NFW
(γ ¼ 1.26)” cases and 11 for “generalized NFW (free γ)”]

CERDEÑO, FORNASA, GREEN, and PEIRÓ PHYSICAL REVIEW D 94, 043516 (2016)

043516-2



in order to determine the configuration that best fits a set of
experimental data. These data have been chosen to maxi-
mize the precision in the reconstruction of the parameters of
the mass model and, thus, of the MW gravitational
potential. They are:

(i) the local circular velocity, Θ0, inferred from the
motion of SgrA⋆ [65], with the rotational component
of the Sun’s velocity with respect to the Local
Standard of Rest taken from the analysis of 3000
stars in the APOGEE survey [66];

(ii) the sum of the Oort constants, measured from
the motion of Cepheid stars from the Hipparcos
satellite [67];

(iii) the local surface density within a distance of 1.1 kpc
from the Galactic plane. The measurement is taken
from Refs. [68,69];

(iv) the rotation curve between 0.35R0 and 0.9R0, where
R0 is the Solar radius, using terminal velocities
obtained from the spectral line of atomic hydrogen
HI in Ref. [70];

(v) the velocity dispersion of 2000 Blue Horizontal-
Branch stars observed by the Sloan Digital Sky
Survey. The data, analysed in Ref. [71], cover
distances between 5.0 and 60 kpc from the Galactic
center;

(vi) 10 measurements of microlensing optical depth from
the MACHO [72], OGLE-II [73] and EROS collab-
orations [74];

(v) The morphology of the Galactic center excess. This
data is included only for the “generalized NFW (free
γ)” DM halo in order to constrain the mass model
near the center of the MW and also ensure compat-
ibility with a DM interpretation of the Galactic
center excess. Figure 1 of Ref. [39] shows the
morphology of the excess as a function of Galactic

latitude. We consider three data points, namely the
ratios between (i) the emission at 2.5° and 7.5°,
(ii) between 7.5° and 12.5° and, (iii) between 12.5°
and 17.5° (in each case we use the fluxes at the
center of the pink bands in Fig. 1 of Ref. [39]). We
have used the ratios of the intensities rather than the
actual fluxes, since the ratios fix the morphology of
the signal (and, therefore, the parameters of the MW
DM halo) irrespective of the DM annihilation cross
section and channel. For the “NFW” case the
gamma-ray data are neglected. For the “generalized
NFW (γ ¼ 1.26)” case, compatibility with a DM
interpretation of the Galactic center excess is instead
enforced by setting γ equal to 1.26 by hand.

We have constructed a likelihood function, assuming that
each data set is characterized by a Gaussian probability
distribution, and used MultiNestv3.9 [75] to carry out
Bayesian scans to derive the probability distributions of
the free parameters.
Figure 1 shows the resulting 2D probability distributions

for the profile likelihood of the parameters defining the
MW DM halo (ρs and rs) and the disk (Σd and Rd). The
colored regions are for “generalized NFW (fixed
γ ¼ 1.26)”, while the empty ones are for “NFW”. Inner
and outer contours indicate the 68% and 95% confidence
regions, respectively. The full and empty dots mark the
position of the best-fit points for the “generalized NFW
(fixed γ ¼ 1.26)” and “NFW” cases, respectively. Lines of
constant enclosed DM mass, Mχð< rÞ, in the plane ðρs; rsÞ
are hyperbolae. When γ is increased from 1 (empty
contours in Fig. 1) to 1.26 (filled contours), the preferred
region moves approximately along the same hyperbola, in
order to reproduce the same value of the circular velocity
and, thus, the same enclosed mass within R0. However, for
larger γ the preferred region corresponds to a more
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FIG. 1. 2D probability distributions for the scale density, ρs, and scale radius, rs, defining the MW DM halo (left) and for the surface
density, Σd, and the radius, Rd, defining the disk (right). The colored regions correspond to the “generalized NFW (γ ¼ 1.26)” case while
the empty ones are for the “NFW” case. The inner and outer contours denote the 68% and 95% confidence regions for the profile
likelihood. The full and empty dots indicate the best-fit points for the “generalized NFW (γ ¼ 1.26)” and “NFW” cases,
respectively.
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extended halo, i.e., a larger rs. Indeed, the best-fit halo
concentration1 cΔ decreases from 23.2 to 10.1.
Figure 2 shows the same plots as Fig. 1, but, in this case,

the colored contours correspond to the “generalized NFW
(free γ)” case. An additional plot is included, showing the
preferred region in the ðγ; rsÞ plane. Leaving γ free to vary
allows the preferred region to extend to large values of rs,
corresponding to large values of Rd. Note that the best-fit
value for γ is 1.23, but the 68% credible region extends
from 0.6 to approximately 1.6. The best-fit solution is
closer to the NFW best-fit halo than in Fig. 1, and has
concentration cΔ ¼ 14.4.

III. SELF-CONSISTENT VELOCITY
DISTRIBUTIONS

The phase-space distribution, Fðx; vÞ, of a matter com-
ponent is self-consistent if, together with the gravitational
potential of the system, ΦðxÞ, it satisfies the Boltzmann
equation (see, e.g., Refs. [20,26,76]). For a spherically
symmetric system with an isotropic velocity distribution,
the phase-space distribution is a function of the binding
energy, E, only. It is completely determined by the
gravitational potential exterior to the Solar radius and
can be calculated using the Eddington equation [77].
For the more general case of a spherically symmetric

system with an anisotropic velocity tensor, the phase-space
distribution depends on the modulus of the angular
momentum, L, as well. In this case a parametric form is
often assumed for FðE;LÞ, and for some sets of parameters,
self-consistent solutions can be found. We follow Ref. [78]
which assumes that the phase-space distribution is
separable, FðE; LÞ ¼ FEðEÞFLðLÞ, a hypothesis that has
been verified for simulated cluster-size DM halos [78].

The authors of Ref. [78] also assume that a reasonable
parametrization for FLðLÞ is given by the following
expression:

FLðLÞ ¼
�
1þ L2

2L2
0

�−β∞þβ0
L−2β0 : ð2Þ

Here βðrÞ is the velocity anisotropy parameter

βðrÞ ¼ 1 −
σ2t
2σ2r

; ð3Þ

where σt and σr are the tangential and radial velocity
dispersions, and β0 and β∞ are its values at r ¼ 0 and
infinity, respectively. L0 governs the transition of βðrÞ
between these values. The self-consistent solution obtained
from the assumption in Eq. (2) matches the velocity
anisotropy of simulated cluster-sized halos [78], in which
β is zero close to the center, growing to β ∼ 0.2 at rs, and
increasing further to β ∼ 0.4 at r ∼ 10rs. Similar behavior
has been found in simulations of MW-like halos [8,79],
although in this case, β may decrease beyond r ∼ 5rs. This
behavior can, however, also be reproduced by Eq. (2).
For a fixed gravitational potential and particular values

of L0, β0 and β∞, FEðEÞ can be determined by inverting the
following equation:

ρχðrÞ ¼
Z

d3vFEðEÞFLðLÞ;

¼
Z

d3vFEðEÞ
�
1þ L2

2L2
0

�−β∞þβ0
L−2β0 : ð4Þ

This is a Volterra integral equation which has to be solved
numerically [78].
Using the phase-space distribution function, we can now

derive the WIMP local speed distribution, f1ðvÞ. This is the
relevant quantity for direct detection experiments, and is
defined as
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FIG. 2. Left and center: the same as in Fig. 1, but now the colored contours correspond to the “generalized NFW (free γ)” case. Right:
2D probability distributions of the DM halo scale radius, rs, and inner slope, γ, for the generalized “NFW (free γ)” case.

1The concentration cΔ is defined as the ratio between the
distance enclosing a density that is Δ times the critical density of
the Universe and rs. In terms of the matter density parameter,
ΩmðzÞ, we use Δ ¼ 18π2 þ 82ðΩmðzÞ − 1Þ − 39ðΩmðzÞ − 1Þ2.
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f1ðvÞ ¼
Z

v2fðvÞdΩv ¼
R
v2Fðx⊙; vÞdΩv

ρχðx⊙Þ
: ð5Þ

The speed distribution is equal to zero for speeds larger
than the local escape velocity in the Galactic rest frame,
vesc. As discussed in Ref. [20], the astronomical observa-
tions we use to constrain the gravitational potential do not
provide any information on L0, β0 and β∞ and, hence, these
parameters must be marginalized over. This can lead to
large uncertainties in FðE; LÞ. However, the shape of the
speed distribution is directly constrained by some of the
observational data of Sec. II. For instance the distribution
does not extend beyond the escape velocity (which is a
measure of the local gravitational potential), while the
position of the peak is related to the local circular velocity.

Therefore, f1ðvÞ can be reconstructed with reasonable
uncertainties, even after the marginalization of L0, β0
and β∞. The effect of β0 is localized mainly at small
velocities. The reason for this is that particles with small
velocities have large binding energies (since
E ¼ Φ − v2=2) and, thus, correspond to orbits that are
localized close to the center of the halo. Conversely,
particles with large velocities have small binding energies
and can reach large radii, and hence become sensitive to
β∞. When L0 is small, increasing its value has the same
effect as decreasing β0. On the other hand, for L0 ∼ R0Θ0,
the effect of increasing L0 is the same as increasing β∞.
Finally, for large L0, the velocity distribution becomes
independent of L0 since further increasing the transition
scale only affects large radii. See Ref. [20] for a detailed
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FIG. 3. Top: Local speed distribution, f1ðvÞ, for the “generalized NFW (free γ)” case. The solid green line is calculated for the best-fit
point assuming isotropy, while the inner and outer contours denote the 68% and 95% confidence uncertainties. The dashed green line
(difficult to see because it overlaps with the solid green one) is for the same best-fit point but for an anisotropic phase-space density,
FðE;LÞ, as in Eq. (2). Bottom left: Speed distributions for the best-fit points for the three DM halo profiles considered in our scans. The
solid red line is for “NFW”, the solid blue one for “generalized NFW (γ ¼ 1.26)” and the solid green one for “generalized NFW (free
γ)”. The dashed red line is for “NFW” but for an anisotropic phase-space density. Bottom right: Same as bottom left, but for speeds larger
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discussion of how FEðEÞ and f1ðvÞ depend on both the
gravitational potential and the velocity anisotropy of the
system.
In the top panel of Fig. 3 we show the speed distribution

and its uncertainties for the case of “generalized NFW (free
γ)”, obtained assuming an isotropic phase-space distribu-
tion, i.e. FðE;LÞ ¼ FðEÞ. The overall uncertainty on f1ðvÞ
for “generalized NFW (free γ)” is smaller than a factor of 2
for velocities below 440 km s−1. As found in Ref. [20], the
speed distribution has a characteristic velocity around
350 km s−1 where the uncertainty is smallest, which can
be explained as follows. The distributions must have a peak
between 200 and 300 Kms−1 (in agreement with the
measured value of Θ0). They are also normalized to unity,
so that a large f1ðvÞ in a given range of speed (e.g., a high
peak) needs to be counterbalanced in another part of the
spectrum (e.g., a depleted high-speed tail).
The bottom left panel of Fig. 3 compares the speed

distributions for the best-fit points of the three DM halos
considered in this work, under the hypothesis of an
isotropic phase-space distribution. As expected, the posi-
tion of the peak is approximately the same in each case,
since it is related to Θ0. The height of the peak, however, is
reduced when γ is larger than one. We suspect that this is
related to the fact that for γ > 1, the DM halo is more
extended than a normal NFW profile (the best-fit rs is
larger). Therefore, there are more orbits that extend to large
distances from the centre, and have large speeds, and a
more highly populated high-speed tail leads to a less
pronounced peak. This is highlighted in the bottom right
panel which focuses on the region with v > 200 km s−1.
The speed distributions for the “NFW” and “generalized
NFW (γ ¼ 1.26)” cases are characterised by similar uncer-
tainty bands as the “generalized NFW (free γ)” case in the
top panel. For clarity, we do not display the uncertainty
bands in these cases.
The dashed lines in Fig. 3 show the best-fit speed

distributions for the anisotropic phase-space distribution,
FðE;LÞ, for “generalized NFW (free γ)” (top panel), and
“NFW” (bottom panels). We have fixed L0 to be equal to
rsΘ0 and β0 and β∞ to 0 and 0.3, respectively. These are
reasonable values for MW-like halos, according to Ref. [8].
This small deviation from isotropy has a relatively small
effect on the speed distributions, and is subdominant to the
changes that arise from varying the inner slope of the
density profile. We therefore do not consider anisotropy
when calculating exclusion limits in the next section.
However, Ref. [20] found that marginalizing over L0, β0
and β∞ increases the size of the uncertainty band by
approximately a factor of 2.
Finally, we note that the uncertainty bands in the top

panel of Fig. 3, were derived by dividing the range between
0 and 800 Kms−1 into 50 bins and determining the 68%
and 95% confidence level interval for each bin independ-
ently. As the bands are the envelope of 50 independent

distributions, not all of the f1ðvÞ curves that lie within them
correspond to physical models for the MW. For instance,
there are no models in our scans that correspond to the
lower or upper edges of the uncertainty bands.

IV. LUX EXCLUSION LIMITS

In this section we derive the upper bounds on the DM-
nucleon scattering cross section, using the self-consistent
speed distribution functions obtained in the previous
section. We focus on the LUX experiment, making use
of the 2013 published data set [53]. LUX currently provides
the most stringent upper limit on the scattering cross
section within the mass range favored by a DM interpre-
tation of the Fermi-LAT data (from approximately 8 to
200 GeV). However our procedure of using gamma-ray
data to constrain the MW model can be used to calculate
consistent bounds for any direct detection data set.
The event rate in detectors based on liquid xenon is

measured in terms of the prompt scintillation signal, S1.
Following the formalism of Ref. [80], the number of
expected photoelectrons (PEs), νðERÞ, is given by

νðERÞ ¼ ERLeffðERÞQγ; ð6Þ

where ER is the nuclear recoil energy, Qγ is the photon
detection efficiency (for LUX Qγ ¼ 0.14 [53]) and
LeffðERÞ is the absolute scintillation yield, which we have
digitized from Ref. [81]. The event rate in terms of the
number of PEs, n, is then given by

dR
dn

¼
Z

∞

0

dR
dER

PoissðnjνðERÞÞdER; ð7Þ

where PoissðnjνðERÞÞ is a Poisson distribution with expect-
ation value νðERÞ and dR=dER is the usual differential
event rate in terms of nuclear recoil energy (see, e.g.,
Ref. [2]). Finally, taking into account the finite average
single-PE resolution of the photomultipliers, σPMT ¼
0.37 PE [82], the resulting S1-spectrum is given by

dR
dS1

¼
X∞
n¼1

GaussðS1jn; ffiffiffi
n

p
σPMTÞ

dR
dn

ζðS1Þ; ð8Þ

where ζðS1Þ is the acceptance corresponding to the data
cuts applied and is taken, in this case, from the bottom
panel of Fig. 1 of Ref. [53], including an extra factor 1=2 to
account for the 50% nuclear recoil acceptance. The
function GaussðS1jn; ffiffiffi

n
p

σPMTÞ denotes a normal distribu-
tion with mean n and standard deviation

ffiffiffi
n

p
σPMT. We

consider a range in S1 between 2 and 30 PEs and an
exposure of 10065.4 kg days.
The differential event rate, dR=dER, is proportional to

the mean inverse WIMP speed function,
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ηðvminÞ ¼
Z
vmin

~f1ðvÞ
v

dv; ð9Þ

where ~f1ðvÞ is the normalized WIMP speed distribution in
the detector reference frame and vmin is the minimum
WIMP speed that can cause a recoil of energy ER,

vmin ¼
�
ERmN

2μ2N

�
1=2

; ð10Þ

where mN is the atomic mass of the detector nuclei and μN
the WIMP-nuclei reduced mass. The WIMP speed distri-
bution in the detector rest frame is calculated from the
Galactic rest frame velocity distribution, fðvÞ, discussed in
Sec. III, by carrying out a Galilean transformation:
v → v0 ¼ v þ ve, where ve is the Earth’s speed with respect
to the Galactic rest frame. Ignoring the Earth’s orbital
speed, ve is the sum of the circular rotational velocity at the
Solar radius, ð0;Θ0; 0Þ, and the component of the Solar
peculiar velocity in the direction of Galactic rotation VRSR⊙;ϕ .
In the left panel of Fig. 4 we show ηðvminÞ and its

uncertainties for the “generalized NFW (free γ)” case,
assuming an isotropic phase-space density. We compare it
with the SHM, which has a Maxwellian speed distribution
and local circular speed Θ0 ¼ 220 km s−1, that the LUX
collaboration used to derive their exclusion limits. The right
panel compares ηðvminÞ for the best fits of the three DM
halo profiles that we have considered. The uncertainty in
the three cases is similar to that for the “generalized NFW
(free γ)” so, for clarity, we do not include it in this panel.
When calculating the mean inverse speed distribution, Θ0,
vesc and VRSR⊙;ϕ are needed. For consistency, in each case we
use the best-fit values from the Bayesian scan performed for

the corresponding halo profile.2 The three self-consistent
inverse speed distributions are larger than that of the SHM
for vmin > 300 km s−1 and the differences between them
reflect the differences in the speed distributions in Fig. 3. In
particular the behavior at very large speeds reflects their
different escape speeds. Notice that the SHM inverse mean-
velocity becomes larger than that for the “NFW” and
“Generalized NFW (free γ)” for vmin > 700 km s−1, how-
ever this only occurs when ηðvminÞ is already very small.
We calculate the LUX exclusion limit on the spin-

independent component of the WIMP-nucleon scattering
cross-section, σSIχ;p, at 90% confidence level, using the
Yellin maximum gap method [83]. The first results from
LUX reported one candidate event, located at the edge of
their signal region [53]. Following Ref. [84] we assume that
this event is due to background leakage. The resulting
exclusion limit for the SHM matches the published results
of the LUX collaboration very well (see Fig. 3 of Ref. [84]).
This indicates that this method is sufficient for exploring
the effects of different mass models for the MW on the
exclusion limit.
The expected number of recoil events is directly propor-

tional to the product of the WIMP-nucleon scattering cross
section, σSIχ;p, and the localDMdensityρ0. Therefore, in order
to calculate an upper limit on σSIχ;p, a value for ρ0 must be
specified. A change in the local DM density leads to a
uniform shift in the exclusion limit for all DMmasses. In the
left panel of Fig. 5, the solid green line shows the LUX
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FIG. 4. Left: Best-fit inverse speed function, ηðvminÞ, for the “generalized NFW (free γ)” model. The solid green line is for the best-fit
point, while the inner and outer band represent the 68% and 95% confidence level regions. The black line is the SHM. Right: Best-fit
inverse speed functions for the SHM (black line), “NFW” (red), “generalized NFW (γ ¼ 1.26)” (blue) and “generalized NFW (free γ)”
(green line). In all cases an isotropic phase-space density is assumed.

2The edges of the 68% and 95% uncertainty bands for ηðvminÞ
in the left panel of Fig. 4 are computed using the 68% and
95% confidence levels of the probability distributions for Θ0, vesc
and VRSR⊙;ϕ .
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exclusion limit for the self-consistent isotropic speed dis-
tribution for the best fit of the “generalized NFW (free γ)”
case, calculated using the best-fit density, which in this case
is ρ0 ¼ 0.42 GeVcm−3 (see Ref. [85] for a recent review of
determinations of the local DM density). Also, the short-
dashed black line shows the limit obtained for the SHM,
which has a local density of ρ0 ¼ 0.3 GeV cm−3. The
difference between the two exclusion limits at large mχ is
around 20% and the SHM is outside of the 68% confidence
level uncertainty of the self-consistent speed distribution for
WIMP masses above ∼40 GeV. This discrepancy is mainly
due to the different values of the local density. However, the
different shapesof the exclusion limits for lowWIMPmasses
reflect the differences in the inverse speed distributions. To
emphasise this we also show (green dashed line in the left
panel of Fig. 5) the exclusion limit using the self-consistent
speed distribution but fixing the DM local density to
0.3 GeVcm−3, matching that of the SHM.
The right panel of Fig. 5 compares the exclusion limits

obtained using the best-fit solutions for the three DM
density profiles we consider. As before, we also show
(dashed lines) the exclusion limits using the self-consistent
speed distributions and a fixed local density of
0.3 GeV cm−3, rather than the best-fit values, in order to
isolate the effect of the speed distribution from that of the
density. The differences in the speed distributions mainly
affect the exclusion limits in the low-mass regime, which
differ from that of the SHM by tens of percent for
mχ ≲ 40 GeV. Depending on the halo profile, the limits
can be either tighter (for the generalized NFW with
γ ¼ 1.26) or weaker (NFW and generalized NFW with
free γ).

As discussed above, and illustrated in Fig. 3, for fixed
values of β0, β∞ andL0 that are reasonable for theMWhalo,
anisotropy in the velocity tensor affects the speed distribu-
tion less than changing the inner slope of the density profile.
We therefore do not show the exclusion limits for the best-fit
anisotropic cases in Fig. 5. Note however that marginalizing
over the anisotropy parameters significantly increases the
uncertainty in the speed distribution, and hence also the
uncertainty in the exclusion limits.

V. CONCLUSIONS

When comparing results from direct and indirect WIMP
searches it is crucial to ensure that the assumptions made
about the properties of the DM halo are consistent. For
example, the constraints on the WIMP mass and scattering
cross section off quarks from direct detection experiments
are sensitive to the local DM density and velocity distri-
bution, both of which depend on the DM density profile.
On the other hand the morphology of the gamma-ray flux
from WIMP annihilation in the MW halo would constrain
the DM density profile. To illustrate how to consistently
include such information in the calculation of direct
detection bounds, we investigate the case of the Fermi-
LAT gamma-ray excess from the Galactic center being due
to WIMP annihilation.
We have derived limits on the spin-independent WIMP-

nucleon elastic scattering cross section from the LUX data,
for best-fit MW mass models that are compatible with a
DM interpretation of the Galactic center excess. We did this
in two different ways. First we enforced compatibility by
simply fixing the logarithmic slope of the DM halo density
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FIG. 5. Left: Upper limit on the spin-independent component of the WIMP-nucleon elastic scattering cross section, σSIχ;p from the LUX
data for the “generalized NFW (free γ)” case (for which the inverse speed function is shown in the left panel of Fig. 4) and its
uncertainties. The short-dashed black line corresponds to the SHM, as used by the LUX collaboration. The dashed green line uses the
self-consistent speed distribution for the “generalized NFW (free γ)” case, but with a local density of ρ0 ¼ 0.3 GeV cm−3. Right:
Exclusion limits corresponding to the best-fit solutions for each of the three density profiles considered in this analysis. The solid lines
are obtained using the corresponding best-fit values of Θ0, vesc, VRSR⊙;ϕ and ρ0, while the dashed lines use a common local density of
ρ0 ¼ 0.3 GeV cm−3. The short-dashed black line denotes the upper limit for the SHM.
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profile to the value which gives the best fit to the
morphology of the Galactic center excess, γ ¼ 1.26.
Second we allowed the inner slope to vary and included
the morphology of the Galactic center excess in the data
sets used to constrain the mass model. In each case we used
multiple observational data sets, such as stellar kinematics
and microlensing, to constrain the parameters of the mass
model. We found that DM halos with an inner slope γ larger
than 1 tend to be more extended, having a larger scale
radius rs and a lower concentration. On the contrary, the
baryonic component is well constrained by observation in
the inner Galaxy and from local measurement. Thus, its
properties do not change significantly when the GeVexcess
is included in the observational constraints.
We then derived the DM speed distribution from the

inferred gravitational potential of the MW in a self-
consistent way, in the case an isotropic phase-space density,
FðE;LÞ ¼ FðEÞ. These self-consistent speed distributions
have more particles in their high-speed tails than the SHM,
which is probably related to the fact that the best-fit DM
halo is more extended than the SHM. Also, we have found
that this has a significant effect on the cross section
exclusion limit from the LUX data. As previously found
in e.g. Ref. [25,27], the best-fit MW mass models have
values for the local DM density that are larger than that of
the SHM, which tightens the exclusion limit for all WIMP
masses. The self-consistent speed distributions affect the
exclusion limits for low masses, e.g. below 40 GeV. For
these light WIMPs, the total number of events expected in
LUX is found by integrating the inverse speed distribution
ηðvminÞ above a vmin of, approximately, 200 − 300 km s−1

(see Eq. (9). As discussed in Sec. III (and shown in Figs. 3
and 4), the high-speed tail of the speed distribution is more
populated for the generalized NFW halo profiles. The
“generalized NFW (γ ¼ 1.26)” case yields the largest
number of expected events, followed by “generalized
NFW (free γ)”. Therefore the exclusion limits for light
WIMPs are tightest for the “generalized NFW (γ ¼ 1.26)”
case, and both of the generalized NFW models produce

tighter exclusion limits than the standard NFW profile. For
light WIMPs the exclusion limits for the self-consistent
velocity distributions differ from that for the SHM by tens
of percent and, depending on the halo profile, can be either
tighter or weaker.
We also considered the possibility of a DM halo with an

anisotropic velocity tensor, parametrizing the L-dependent
component of the phase-space density according to
Ref. [78]. For reasonable, fixed values of the anisotropy
parameters, the speed distributions are very similar to the
isotropic case (for a givenDMdensity profile). Thereforewe
expect the LUX exclusion limits to be very similar to the
isotropic case. Marginalizing over the unknown anisotropy
parameterswould, however, significantly increase the uncer-
tainty on both the speed distribution and the exclusion limits.
Our work reinforces the need for a consistent interpre-

tation of data from DM experiments. Combining data
from different strategies allows not only an improved
reconstruction of the properties of DM, but also better
control over the uncertainties involved. The amount of
experimental data on DM is rapidly increasing, alongside
the precision of theoretical models. It is, therefore, vital to
identify and apply good practice in the way different data
sets are combined.
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