18 research outputs found

    Inputs and processes affecting the distribution of particulate iron in the North Atlantic along the GEOVIDE (GEOTRACES GA01) section

    Get PDF
    The aim of the GEOVIDE cruise (May–June 2014, R/V Pourquoi Pas?) was to provide a better understanding of trace metal biogeochemical cycles in the North Atlantic Ocean. As marine particles play a key role in the global biogeochemical cycle of trace elements in the ocean, we discuss the distribution of particulate iron (PFe), in relation to the distribution of particulate aluminium (PAl), manganese (PMn), and phosphorus (PP). Overall, 32 full vertical profiles were collected for trace metal analyses, representing more than 500 samples. This resolution provides a solid basis for assessing concentration distributions, elemental ratios, size fractionation, and adsorptive scavenging processes in key areas of the thermohaline overturning circulation. Total particulate iron concentrations ranged from as low as 9&thinsp;pmol&thinsp;L−1 in surface waters of the Labrador Sea to 304&thinsp;nmol&thinsp;L−1 near the Iberian margin, while median PFe concentrations of 1.15&thinsp;nmol&thinsp;L−1 were measured over the sub-euphotic ocean interior. Within the Iberian Abyssal Plain, the ratio of PFe to PAl was identical to the continental crust molar ratio (0.21&thinsp;mol&thinsp;mol−1), indicating the important influence of crustal particles in the water column. Overall, the lithogenic component explained more than 87% of PFe variance along the section. Within the Irminger and Labrador basins, the formation of biogenic particles led to an increase in the PFe∕PAl ratio (up to 0.64&thinsp;mol&thinsp;mol−1) compared to the continental crust ratio. Continental margins induce high concentrations of particulate trace elements within the surrounding water masses (up to 10&thinsp;nmol&thinsp;L−1 of PFe). For example, horizontal advection of PFe was visible more than 250&thinsp;km away from the Iberian margin. Additionally, several benthic nepheloid layers were observed more than 200&thinsp;m above the seafloor along the transect, especially in the Icelandic, Irminger, and Labrador basins, suspending particles with high PFe content of up to 89&thinsp;nmol&thinsp;L−1.</p

    Particulate barium tracing of significant mesopelagic carbon remineralisation in the North Atlantic

    Get PDF
    The remineralisation of sinking particles by prokaryotic heterotrophic activity is important for controlling oceanic carbon sequestration. Here, we report mesopelagic particulate organic carbon (POC) remineralisation fluxes in the North Atlantic along the GEOTRACES-GA01 section (GEOVIDE cruise; May-June 2014) using the particulate biogenic barium (excess barium; Baxs/ proxy. Important mesopelagic (100-1000 m) Baxs differences were observed along the transect depending on the intensity of past blooms, the phytoplankton community structure, and the physical forcing, including downwelling. The subpolar province was characterized by the highest mesopelagic Baxs content (up to 727 pmol L-1/, which was attributed to an intense bloom averaging 6 mg chl a m-3 between January and June 2014 and by an intense 1500m deep convection in the central Labrador Sea during the winter preceding the sampling. This downwelling could have promoted a deepening of the prokaryotic heterotrophic activity, increasing the Baxs content. In comparison, the temperate province, characterized by the lowest Baxs content (391 pmol L-1/, was sampled during the bloom period and phytoplankton appear to be dominated by small and calcifying species, such as coccolithophorids. The Baxs content, related to oxygen consumption, was converted into a remineralisation flux using an updated relationship, proposed for the first time in the North Atlantic. The estimated fluxes were of the same order of magnitude as other fluxes obtained using independent methods (moored sediment traps, incubations) in the North Atlantic. Interestingly, in the subpolar and subtropical provinces, mesopelagic POC remineralisation fluxes (up to 13 and 4.6 mmol Cm-2 d-1, respectively) were equalling and occasionally even exceeding upper-ocean POC export fluxes, deduced using the 234Th method. These results highlight the important impact of the mesopelagic remineralisation on the biological carbon pump of the studied area with a near-zero, deep (> 1000 m) carbon sequestration efficiency in spring 2014

    Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect

    Get PDF
    We report here the results of total mercury (HgT) determinations along the 2014 Geotraces Geovide cruise (GA01 transect) in the North Atlantic Ocean (NA) from Lisbon (Portugal) to the coast of Labrador (Canada). HgT concentrations in unfiltered samples (HgTUNF) were log-normally distributed and ranged between 0.16 and 1.54 pmol L−1, with a geometric mean of 0.51 pmol L−1 for the 535 samples analysed. The dissolved fraction (< 0.45 ”m) of HgT (HgTF), determined on 141 samples, averaged 78 % of the HgTUNF for the entire data set, 84 % for open seawaters (below 100 m) and 91 % if the Labrador Sea data are excluded, where the primary production was high (with a winter convection down to 1400 m). HgTUNF concentrations increased eastwards and with depth from Greenland to Europe and from subsurface to bottom waters. The HgTUNF concentrations were similarly low in the subpolar gyre waters (â€‰âˆŒâ€‰â€Ż0.45 pmol L−1), whereas they exceeded 0.60 pmol L−1 in the subtropical gyre waters. The HgTUNF distribution mirrored that of dissolved oxygen concentration, with highest concentration levels associated with oxygen-depleted zones. The relationship between HgTF and the apparent oxygen utilization confirms the nutrient-like behaviour of Hg in the NA. An extended optimum multiparameter analysis allowed us to characterize HgTUNF concentrations in the different source water types (SWTs) present along the transect. The distribution pattern of HgTUNF, modelled by the mixing of SWTs, show Hg enrichment in Mediterranean waters and North East Atlantic Deep Water and low concentrations in young waters formed in the subpolar gyre and Nordic seas. The change in anthropogenic Hg concentrations in the Labrador Sea Water during its eastward journey suggests a continuous decrease in Hg content in this water mass over the last decades. Calculation of the water transport driven by the Atlantic Meridional Overturning Circulation across the Portugal–Greenland transect indicates northward Hg transport within the upper limb and southward Hg transport within the lower limb, with resulting net northward transport of about 97.2 kmol yr−1

    Introduction to the French GEOTRACES North Atlantic Transect (GA01): GEOVIDE cruise

    Get PDF
    The GEOVIDE cruise, a collaborative project within the framework of the international GEOTRACES programme, was conducted along the French-led section in the North Atlantic Ocean (Section GA01), between 15 May and 30 June 2014. In this special issue (https://www.biogeosciences.net/special_issue900.html), results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 18 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue

    Dissolved Pb and Pb isotopes in the North Atlantic from the GEOVIDE transect (GEOTRACES GA-01) and their decadal evolution

    Get PDF
    During the 2014 GEOVIDE transect, seawater samples were collected for dissolved Pb and Pb isotope analysis. These samples provide a high-resolution snapshot of the source regions for the present Pb distribution in the North Atlantic Ocean. Some of these stations were previously occupied for Pb from as early as 1981, and we compare the 2014 data with these older data, some of which are reported here for the first time. Lead concentrations were highest in subsurface Mediterranean Water (MW) near the coast of Portugal, which agrees well with other recent observations by the US GEOTRACES program (Noble et al., 2015). The recently formed Labrador Sea Water (LSW) between Greenland and Nova Scotia is much lower in Pb concentration than the older LSW found in the West European Basin due to decreases in Pb emissions into the atmosphere during the past 20 years. Comparison of North Atlantic data from 1989 to 2014 shows decreasing Pb concentrations consistent with decreased anthropogenic inputs, active scavenging, and advection/convection. Although the isotopic composition of northern North Atlantic seawater appears more homogenous compared to previous decades, a clear spatiotemporal trend in isotope ratios is evident over the past 15 years and implies that small changes to atmospheric Pb emissions continue. Emissions data indicate that the relative proportions of US and European Pb sources to the ocean have been relatively uniform during the past 2 decades, while aerosol data may suggest a greater relative proportion of natural mineral Pb. Using our measurements in conjunction with emissions inventories, we support the findings of previous atmospheric analyses that a significant portion of the Pb deposited to the ocean in 2014 was natural, although it is obscured by the much greater solubility of anthropogenic aerosols over natural ones.</p

    Introduction to the French GEOTRACES North Atlantic transect (GA01): GEOVIDE cruise

    Get PDF
    © 2018 Author(s). The GEOVIDE cruise, a collaborative project within the framework of the international GEOTRACES programme, was conducted along the French-led section in the North Atlantic Ocean (Section GA01), between 15 May and 30 June 2014. In this special issue (https://www.biogeosciences.net/special-issue900.html), results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 18 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue

    Increased intracellular concentrations of DMSP and DMSO in iron-limited oceanic phytoplankton Thalassiosira oceanica and Trichodesmium erythraeum

    No full text
    We investigated the link between iron (Fe) limitation and intracellular dimethylsulfoniopropionate (DMSP) concentration in two oceanic phytoplankton species, the diatom Thalassiosira oceanica and the diazotrophic cyanobacterium Trichodesmium erythraeum. Dimethylsulfoxide (DMSO) concentrations were also measured in Fe-replete and Fe-limited T. oceanica. Fe limitation decreased the growth rates of T. oceanica and T. erythraeum by 33-fold and 3.5-fold, respectively and increased intracellular DMSP (DMSPp) concentrations by 12-fold (from 2.8 to 33.7 mmol L-cell(-1)) and by 45-fold (from 0.05 to 2.27 mmol L-trichome(-1)), respectively. Intracellular dimethylsulfoxide (DMSOp) concentrations in T. oceanica increased by 5-fold under severe Fe limitation, from 0.78 mmol L-cell(-1) in Fe-replete cells to 3.86 mmol L-cell(-1). The increase in DMSPp and DMSOp under Fe limitation provides support for the role of these sulfur compounds as antioxidants. Under severe Fe limitation, the large increase in DMSPp : C and DMSP: chlorophyll a (Chl a) ratios for both T. oceanica (by 16- and 40-fold, respectively) and T. erythraeum (by 18- and 145-fold, respectively) places these species above the range of values generally attributed to diatoms and cyanophytes. Comparison of these values with in situ results, such as those from Fe fertilization experiments, suggests that the decrease in DMSPp : Chl a and DMSOp : Chl a that is generally observed with alleviation of Fe limitation may be partly related to decreases in DMSPp and DMSOp in individual species. The role of diatoms and diazotrophic cyanobacteria in the biogeochemical cycle of dimethylsulfide and associated sulfur compounds in Fe-limited oceanic environments should not be overlooked

    Contribution of resuspended sedimentary particles to dissolved iron and manganese in the ocean: An experimental study

    No full text
    International audienceA number of trace metals play essential roles in marine ecosystem structure and biological productivity. Until recently, it has been argued that phytoplankton access primarily dissolved iron, while particulate iron was considered a refractory material with little use biologically and limited interaction with the dissolved pool. In order to assess the transfer mechanisms between sediment-sourced particulate trace metals and the dissolved pool, we conducted a 14-month incubation that reacted resuspended sediments with natural seawater, both originating from the Kerguelen area (KEOPS cruises; Southern Ocean), in the dark, and at concentrations replicating natural conditions. Three types of sediments were investigated (named BioSi, BioSi+ Ca, and Basalt), mostly composed of (i) biogenic silica (bSiO(2)), (ii) bSiO(2) and calcite, and (iii) basaltic fragments, respectively. The release of dissolved silicon (dSi), iron (dFe) and manganese (dMn) was monitored regularly throughout the incubation, as well as living bacteria density and Fe organic ligands. Depending on the origin and composition of the sediment, unique dFe and dMn fluxes were observed, including a strong decoupling between dFe and dMn. The basaltic sediment released up to 1.09 +/- 0.04 nmol L-1 of dFe and 0.28 +/- 0.09 nmol L-1 of dMn, while the biogenic sediments released a higher 3.91 +/- 0.04 nmol L-1 and 8.03 +/- 0.42 nmol L-1 of dFe and dMn, respectively. Several factors influencing the release and removal of dFe and dMn were discernable at the temporal sampling resolution of the incubation, including the structural composition of the sediment, bacterial abundance, and the formation of manganese oxides. The regular sampling over short timescales and the extended sampling over one year proved to be critical to constrain the processes and exchanges that govern the contribution of the particulate to the dissolved pools. Overall, this incubation provides a strong basis for reassessing the role of resuspended sedimentary particles in the marine biogeochemical cycles of Fe and Mn. Indeed, we show that biogenic silica, calcite-rich and basaltic particles can contribute substantial dissolved Fe and Mn to the overlying water column. In the future, the global extent of this previously overlooked external metal source should be quantified through further process studies and biogeochemical models

    High variability in dissolved iron concentrations in the vicinity of the Kerguelen Islands (Southern Ocean)

    No full text
    Dissolved Fe (dFe) concentrations were measured in the upper 1300 m of the water column in the vicinity of the Kerguelen Islands as part of the second Kerguelen Ocean Plateau compared Study (KEOPS2). Concentrations ranged from 0.06 nmol L-1 in offshore, Southern Ocean waters to 3.82 nmol L-1 within Hillsborough Bay, on the north-eastern coast of the Kerguelen Islands. Direct island runoff, glacial melting and resuspended sediments were identified as important inputs of dFe that could potentially fertilise the northern part of the plateau. A significant deep dFe enrichment was observed over the plateau with dFe concentrations increasing up to 1.30 nmol L-1 close to the seafloor, probably due to sediment resuspension and pore water release. Biological uptake was shown to induce a significant decrease in dFe concentrations between two visits (28 days apart) at a station above the plateau. Our work also considered other processes and sources, such as lateral advection of enriched seawater, remineralisation processes, and the influence of the polar front (PF) as a vector for Fe transport. Overall, heterogeneous sources of Fe over and off the Kerguelen Plateau, in addition to strong variability in Fe supply by vertical or horizontal transport, may explain the high variability in dFe concentrations observed during this study

    Trace element and isotope deposition across the air-sea interface: progress and research needs

    Get PDF
    WOS:000391139900018International audienceThe importance of the atmospheric deposition of biologically essential trace elements, especially iron, is widely recognized, as are the difficulties of accurately quantifying the rates of trace element wet and dry deposition and their fractional solubility. This paper summarizes some of the recent progress in this field, particularly that driven by the GEOTRACES, and other, international research programmes. The utility and limitations of models used to estimate atmospheric deposition flux, for example, from the surface ocean distribution of tracers such as dissolved aluminium, are discussed and a relatively new technique for quantifying atmospheric deposition using the short-lived radionuclide beryllium-7 is highlighted. It is proposed that this field will advance more rapidly by using a multi-tracer approach, and that aerosol deposition models should be ground-truthed against observed aerosol concentration data. It is also important to improve our understanding of the mechanisms and rates that control the fractional solubility of these tracers. Aerosol provenance and chemistry (humidity, acidity and organic ligand characteristics) play important roles in governing tracer solubility. Many of these factors are likely to be influenced by changes in atmospheric composition in the future. Intercalibration exercises for aerosol chemistry and fractional solubility are an essential component of the GEOTRACES programme. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'
    corecore