197 research outputs found

    Human origins in Southern African palaeo-wetlands? Strong claims from weak evidence

    Get PDF
    Attempts to identify a ‘homeland’ for our species from genetic data are widespread in the academic literature. However, even when putting aside the question of whether a ‘homeland’ is a useful concept, there are a number of inferential pitfalls in attempting to identify the geographic origin of a species from contemporary patterns of genetic variation. These include making strong claims from weakly informative data, treating genetic lineages as representative of populations, assuming a high degree of regional population continuity over hundreds of thousands of years, and using circumstantial observations as corroborating evidence without considering alternative hypotheses on an equal footing, or formally evaluating any hypothesis. In this commentary we review the recent publication that claims to pinpoint the origins of ‘modern humans’ to a very specific region in Africa (Chan et al., 2019), demonstrate how it fell into these inferential pitfalls, and discuss how this can be avoided

    Genetic variation in prehistoric Sardinia

    Get PDF
    We sampled teeth from 53 ancient Sardinian (Nuragic) individuals who lived in the Late Bronze Age and Iron Age, between 3,430 and 2,700 years ago. After eliminating the samples that, in preliminary biochemical tests, did not show a high probability to yield reproducible results, we obtained 23 sequences of the mitochondrial DNA control region, which were associated to haplogroups by comparison with a dataset of modern sequences. The Nuragic samples show a remarkably low genetic diversity, comparable to that observed in ancient Iberians, but much lower than among the Etruscans. Most of these sequences have exact matches in two modern Sardinian populations, supporting a clear genealogical continuity from the Late Bronze Age up to current times. The Nuragic populations appear to be part of a large and geographically unstructured cluster of modern European populations, thus making it difficult to infer their evolutionary relationships. However, the low levels of genetic diversity, both within and among ancient samples, as opposed to the sharp differences among modern Sardinian samples, support the hypothesis of the expansion of a small group of maternally related individuals, and of comparatively recent differentiation of the Sardinian gene pools. © Springer-Verlag 2007

    Complete mitochondrial sequences from Mesolithic Sardinia

    Get PDF
    Little is known about the genetic prehistory of Sardinia because of the scarcity of pre-Neolithic human remains. From a genetic perspective, modern Sardinians are known as genetic outliers in Europe, showing unusually high levels of internal diversity and a close relationship to early European Neolithic farmers. However, how far this peculiar genetic structure extends and how it originated was to date impossible to test. Here we present the first and oldest complete mitochondrial sequences from Sardinia, dated back to 10,000 yBP. These two individuals, while confirming a Mesolithic occupation of the island, belong to rare mtDNA lineages, which have never been found before in Mesolithic samples and that are currently present at low frequencies not only in Sardinia, but in the whole Europe. Preliminary Approximate Bayesian Computations, restricted by biased reference samples for Mesolithic Sardinia (the two typed samples) and Neolithic Europe (limited to central and north European sequences), suggest that the first inhabitants of the island have had a small or negligible contribution to the present-day Sardinian population, which mainly derives its genetic diversity from continental migration into the island by Neolithic times

    Determinants of echolocation call frequency variation in the Formosan lesser horseshoe bat (Rhinolophus monoceros)

    Get PDF
    The origin and maintenance of intraspecific variation in vocal signals is important for population divergence and speciation. Where vocalizations are transmitted by vertical cultural inheritance, similarity will reflect co-ancestry, and thus vocal divergence should reflect genetic structure. Horseshoe bats are characterized by echolocation calls dominated by a constant frequency component that is partly determined by maternal imprinting. Although previous studies showed that constant frequency calls are also influenced by some non-genetic factors, it is not known how frequency relates to genetic structure. To test this, we related constant frequency variation to genetic and non-genetic variables in the Formosan lesser horseshoe bat (Rhinolophus monoceros). Recordings of bats from across Taiwan revealed that females called at higher frequencies than males; however, we found no effect of environmental or morphological factors on call frequency. By comparison, variation showed clear population structure, with frequencies lower in the centre and east, and higher in the north and south. Within these regions, frequency divergence was directional and correlated with geographical distance, suggesting that call frequencies are subject to cultural drift. However, microsatellite clustering analysis showed that broad differences in constant frequency among populations corresponded to discontinuities in allele frequencies resulting from vicariant events. Our results provide evidence that the processes shaping genetic subdivision have concomitant consequences for divergence in echolocation call frequency

    A multistep process for the dispersal of a Y chromosomal lineage in the Mediterranean area

    Get PDF
    Tn this work we focus on a microsatellite-defined Y-chromosomal lineage (network 1.2) identified by us and reported in previous studies, whose geographic distribution and antiquity appear to be compatible with the Neolithic spread of farmers. Here, we set network 1.2 in the Y-chromosomal phylogenetic tree, date it with respect to other lineages associated with the same movements by other authors, examine its diversity by means of tri- and tetranucleotide loci and discuss the implications hi reconstructing the spread of this group of chromosomes in the Mediterranean area. Our results define a tripartite phylogeny wit-bin HG 9 (Rosser et al. 2000) with the deepest branching defined by alleles T (Haplogroup Eu 10) or G (Haplogroup Eu9) at M172 (Semino et al. 2000), and a subsequent branching within Eu9 defined by network 1.2. Population distributions of HG 9 and network 1.2 show that their occurrence in the surveyed area is not due to the spread of people from a single parental population but, rather, to a process punctuated by at least two phases. Our data identify the wide area of the Balkans, Aegean and Anatolia as the possible homeland harbouring the largest variation within network 1.2. The use of recently proposed tests based on the stepwise mutation model suggests that its spread was associated to a population expansion, xvith a high rate of male gene flow in the Turkish Greek area

    A western route of prehistoric human migration from Africa into the Iberian Peninsula

    Get PDF
    Being at the western fringe of Europe, Iberia had a peculiar prehistory and a complex pattern of Neolithization. A few studies, all based on modern populations, reported the presence of DNA of likely African origin in this region, generally concluding it was the result of recent gene flow, probably during the Islamic period. Here, we provide evidence of much older gene flow from Africa to Iberia by sequencing whole genomes from four human remains from northern Portugal and southern Spain dated around 4000 years BP (from the Middle Neolithic to the Bronze Age). We found one of them to carry an unequivocal sub-Saharan mitogenome of most probably West or West-Central African origin, to our knowledge never reported before in prehistoric remains outside Africa. Our analyses of ancient nuclear genomes show small but significant levels of sub-Saharan African affinity in several ancient Iberian samples, which indicates that what we detected was not an occasional individual phenomenon, but an admixture event recognizable at the population level. We interpret this result as evidence of an early migration process from Africa into the Iberian Peninsula through a western route, possibly across the Strait of Gibraltar

    The origin and legacy of the Etruscans through a 2000-year archeogenomic time transect

    Get PDF
    The origin, development, and legacy of the enigmatic Etruscan civilization from the central region of the Italian peninsula known as Etruria have been debated for centuries. Here we report a genomic time transect of 82 individuals spanning almost two millennia (800 BCE to 1000 CE) across Etruria and southern Italy. During the Iron Age, we detect a component of Indo-European–associated steppe ancestry and the lack of recent Anatolian-related admixture among the putative non–Indo-European–speaking Etruscans. Despite comprising diverse individuals of central European, northern African, and Near Eastern ancestry, the local gene pool is largely maintained across the first millennium BCE. This drastically changes during the Roman Imperial period where we report an abrupt population-wide shift to ~50% admixture with eastern Mediterranean ancestry. Last, we identify northern European components appearing in central Italy during the Early Middle Ages, which thus formed the genetic landscape of present-day Italian populations

    The Expanded mtDNA Phylogeny of the Franco-Cantabrian Region Upholds the Pre-Neolithic Genetic Substrate of Basques

    Get PDF
    The European genetic landscape has been shaped by several human migrations occurred since Paleolithic times. The accumulation of archaeological records and the concordance of different lines of genetic evidence during the last two decades have triggered an interesting debate concerning the role of ancient settlers from the Franco-Cantabrian region in the postglacial resettlement of Europe. Among the Franco-Cantabrian populations, Basques are regarded as one of the oldest and more intriguing human groups of Europe. Recent data on complete mitochondrial DNA genomes focused on macrohaplogroup R0 revealed that Basques harbor some autochthonous lineages, suggesting a genetic continuity since pre-Neolithic times. However, excluding haplogroup H, the most representative lineage of macrohaplogroup R0, the majority of maternal lineages of this area remains virtually unexplored, so that further refinement of the mtDNA phylogeny based on analyses at the highest level of resolution is crucial for a better understanding of the European prehistory. We thus explored the maternal ancestry of 548 autochthonous individuals from various Franco-Cantabrian populations and sequenced 76 mitogenomes of the most representative lineages. Interestingly, we identified three mtDNA haplogroups, U5b1f, J1c5c1 and V22, that proved to be representative of Franco-Cantabria, notably of the Basque population. The seclusion and diversity of these female genetic lineages support a local origin in the Franco-Cantabrian area during the Mesolithic of southwestern Europe, ∼10,000 years before present (YBP), with signals of expansions at ∼3,500 YBP. These findings provide robust evidence of a partial genetic continuity between contemporary autochthonous populations from the Franco-Cantabrian region, specifically the Basques, and Paleolithic/Mesolithic hunter-gatherer groups. Furthermore, our results raise the current proportion (≈15%) of the Franco-Cantabrian maternal gene pool with a putative pre-Neolithic origin to ≈35%, further supporting the notion of a predominant Paleolithic genetic substrate in extant European populations

    Craniometric Data Supports Demic Diffusion Model for the Spread of Agriculture into Europe

    Get PDF
    BACKGROUND:The spread of agriculture into Europe and the ancestry of the first European farmers have been subjects of debate and controversy among geneticists, archaeologists, linguists and anthropologists. Debates have centred on the extent to which the transition was associated with the active migration of people as opposed to the diffusion of cultural practices. Recent studies have shown that patterns of human cranial shape variation can be employed as a reliable proxy for the neutral genetic relationships of human populations. METHODOLOGY/PRINCIPAL FINDINGS:Here, we employ measurements of Mesolithic (hunter-gatherers) and Neolithic (farmers) crania from Southwest Asia and Europe to test several alternative population dispersal and hunter-farmer gene-flow models. We base our alternative hypothetical models on a null evolutionary model of isolation-by-geographic and temporal distance. Partial Mantel tests were used to assess the congruence between craniometric distance and each of the geographic model matrices, while controlling for temporal distance. Our results demonstrate that the craniometric data fit a model of continuous dispersal of people (and their genes) from Southwest Asia to Europe significantly better than a null model of cultural diffusion. CONCLUSIONS/SIGNIFICANCE:Therefore, this study does not support the assertion that farming in Europe solely involved the adoption of technologies and ideas from Southwest Asia by indigenous Mesolithic hunter-gatherers. Moreover, the results highlight the utility of craniometric data for assessing patterns of past population dispersal and gene flow

    North African Influences and Potential Bias in Case-Control Association Studies in the Spanish Population

    Get PDF
    BACKGROUND: Despite the limited genetic heterogeneity of Spanish populations, substantial evidences support that historical African influences have not affected them uniformly. Accounting for such population differences might be essential to reduce spurious results in association studies of genetic factors with disease. Using ancestry informative markers (AIMs), we aimed to measure the African influences in Spanish populations and to explore whether these might introduce statistical bias in population-based association studies. METHODOLOGY/PRINCIPAL FINDINGS: We genotyped 93 AIMs in Spanish (from the Canary Islands and the Iberian Peninsula) and Northwest Africans, and conducted population and individual-based clustering analyses along with reference data from the HapMap, HGDP-CEPH, and other sources. We found significant differences for the Northwest African influence among Spanish populations from as low as ≈ 5% in Spanish from the Iberian Peninsula to as much as ≈ 17% in Canary Islanders, whereas the sub-Saharan African influence was negligible. Strikingly, the Northwest African ancestry showed a wide inter-individual variation in Canary Islanders ranging from 0% to 96%, reflecting the violent way the Islands were conquered and colonized by the Spanish in the XV century. As a consequence, a comparison of allele frequencies between Spanish samples from the Iberian Peninsula and the Canary Islands evidenced an excess of markers with significant differences. However, the inflation of p-values for the differences was adequately controlled by correcting for genetic ancestry estimates derived from a reduced number of AIMs. CONCLUSIONS/SIGNIFICANCE: Although the African influences estimated might be biased due to marker ascertainment, these results confirm that Northwest African genetic footprints are recognizable nowadays in the Spanish populations, particularly in Canary Islanders, and that the uneven African influences existing in these populations might increase the risk for false positives in association studies. Adjusting for population stratification assessed with a few dozen AIMs would be sufficient to control this effect
    corecore