230 research outputs found

    The Type IIP SN 2007od in UGC 12846: from a bright maximum to dust formation in the nebular phase

    Get PDF
    Ultraviolet (UV), optical and near infrared (NIR) observations of the type IIP supernova (SN) 2007od are presented, covering from the maximum light to the late phase, allowing to investigate in detail different physical phenomena in the expanding ejecta. These data turn this object into one of the most peculiar IIP ever studied. The early light curve of SN 2007od is similar to that of a bright IIPs with a short plateau, a bright peak (MV = -18 mag), but a very faint optical light curve at late time. However, with the inclusion of mid infrared (MIR) observations during the radioactive decay we have estimate a M(56Ni) ~ 2\times10^-2 M\odot. Modeling the bolometric light curve, ejecta expansion velocities and black-body temperature, we estimate a total ejected mass was 5 - 7.5 M\odot with a kinetic energy of at least 0.5 \times 10^51 erg. The early spectra reveal a boxy H{\alpha} profile and high velocities features of the Balmer series that suggest interaction between the ejecta and a close circum-stellar matter (CSM). SN 2007od may be, therefore, an intermediate case between a Type IIn SN and a typical Type IIP SN. Also late spectra show a clear evidence of CSM and the presence of dust formed inside the ejecta. The episodes of mass loss short before explosion, the bright plateau, along with the relatively small amount of 56Ni and the faint [O I] observed in the nebular spectra are consistent with a super-asympthotic giant branch (super-AGB) progenitor (M~9.7 - 11 M\odot).Comment: V2, some test added and three figures changed from the first version. 21 pages, 18 figures, accepted for publication in MNRAS on May 24, 201

    Quark nova imprint in the extreme supernova explosion SN 2006gy

    Full text link
    The extremely luminous supernova 2006gy (SN 2006gy) is among the most energetic ever observed. The peak brightness was 100 times that of a typical supernova and it spent an unheard of 250 days at magnitude -19 or brighter. Efforts to describe SN 2006gy have pushed the boundaries of current supernova theory. In this work we aspire to simultaneously reproduce the photometric and spectroscopic observations of SN 2006gy using a quark nova model. This analysis considers the supernova explosion of a massive star followed days later by the quark nova detonation of a neutron star. We lay out a detailed model of the interaction between the supernova envelope and the quark nova ejecta paying special attention to a mixing region which forms at the inner edge of the supernova envelope. This model is then fit to photometric and spectroscopic observations of SN 2006gy. This QN model naturally describes several features of SN 2006gy including the late stage light curve plateau, the broad H{\alpha} line and the peculiar blue H{\alpha} absorption. We find that a progenitor mass between 20Msun and 40Msun provides ample energy to power SN 2006gy in the context of a QN.Comment: 15 pages, 9 figure

    Meniscus Matrix Remodeling in Response to Compressive Forces in Dogs

    Get PDF
    Joint motion and postnatal stress of weight bearing are the principal factors that determine the phenotypical and architectural changes that characterize the maturation process of the meniscus. In this study, the effect of compressive forces on the meniscus will be evaluated in a litter of 12 Dobermann Pinschers, of approximately 2 months of age, euthanized as affected by the quadriceps contracture muscle syndrome of a single limb focusing on extracellular matrix remodeling and cell-extracellular matrix interaction (i.e., meniscal cells maturation, collagen fibers typology and arrangement). The affected limbs were considered as models of continuous compression while the physiologic loaded limbs were considered as controls. The results of this study suggest that a compressive continuous force, applied to the native meniscal cells, triggers an early maturation of the cellular phenotype, at the expense of the proper organization of collagen fibers. Nevertheless, an application of a compressive force could be useful in the engineering process of meniscal tissue in order to induce a faster achievement of the mature cellular phenotype and, consequently, the earlier production of the fundamental extracellular matrix (ECM), in order to improve cellular viability and adhesion of the cells within a hypothetical synthetic scaffold

    Evidence of Asymmetry in SN 2007rt, a Type IIn Supernova

    Get PDF
    An optical photometric and spectroscopic analysis of the slowly-evolving Type IIn SN2007rt is presented, covering a duration of 481 days after discovery. Its earliest spectrum, taken approximately 100 days after the explosion epoch, indicates the presence of a dense circumstellar medium, with which the supernova ejecta is interacting. This is supported by the slowly-evolving light curve. A notable feature in the spectrum of SN 2007rt is the presence of a broad He I 5875 line, not usually detected in Type IIn supernovae. This may imply that the progenitor star has a high He/H ratio, having shed a significant portion of its hydrogen shell via mass-loss. An intermediate resolution spectrum reveals a narrow Halpha P-Cygni profile, the absorption component of which has a width of 128 km/s. This slow velocity suggests that the progenitor of SN 2007rt recently underwent mass-loss with wind speeds comparable to the lower limits of those detected in luminous blue variables. Asymmetries in the line profiles of H and He at early phases bears some resemblance to double-peaked features observed in a number of Ib/c spectra. These asymmetries may be indicative of an asymmetric or bipolar outflow or alternatively dust formation in the fast expanding ejecta. In addition, the late time spectrum, at over 240 days post-explosion, shows clear evidence for the presence of newly formed dust.Comment: Submitted to A&A on 4/2/2009. Accepted by A&A on 17/5/2009.15 pages plus 3 pages of online materia

    Evaluation of in vivo response of three biphasic scaffolds for osteochondral tissue regeneration in a sheep model

    Get PDF
    Osteochondral defects are a common problem in both human medicine and veterinary practice although with important limits concerning the cartilaginous tissue regeneration. Interest in the subchondral bone has grown, as it is now considered a key element in the osteochondral defect healing. The aim of this work was to generate and to evaluate the architecture of three cell-free scaffolds made of collagen, magnesium/hydroxyapatite and collagen hydroxyapatite/wollastonite to be implanted in a sheep animal model. Scaffolds were designed in a bilayer configuration and a novel "Honey" configuration, where columns of hydroxyapatite were inserted within the collagen matrix. The use of different types of scaffolds allowed us to identify the best scaffold in terms of integration and tissue regeneration. The animals included were divided into four groups: three were treated using different types of scaffold while one was left untreated and represented the control group. Evaluations were made at 3 months through CT analysis. The novel "Honey" configuration of the scaffold with hydroxyapatite seems to allow for a better reparative process, although we are still far from obtaining a complete restoration of the defect at this time point of follow-up

    Power Over Fibre Systems for the Italian SKA-Low Demonstrators

    Get PDF
    The Power over Fibre technique allows to power remote electronics without using copper cables. Avoiding any interaction between the antenna and its power/signal cable is attractive in the case of testing systems where the evaluation of antenna and/or array performance are crucial parameters under investigation. This is the case of the Sardina Array Demonstrator, an Italian SKA testing platform. In this work is evaluated the applicability of this technology in order to power the electronics of the antennas which will form SAD. The results of an extensive measurement campaign, with respect to both temperature and fibre length, of commercial PoF receivers, is here presented

    Both XPA and DNA polymerase eta are necessary for the repair of doxorubicin-induced DNA lesions

    Get PDF
    Doxorubicin (DOX) is an important tumor chemotherapeutic agent, acting mainly by genotoxic action. This work focus on cell processes that help cell survival, after DOX-induced DNA damage. in fact, cells deficient for XPA or DNA polymerase eta (pol eta, XPV) proteins (involved in distinct DNA repair pathways) are highly DOX-sensitive. Moreover, LY294002, an inhibitor of PIKK kinases, showed a synergistic killing effect in cells deficient in these proteins, with a strong induction of G2/M cell cycle arrest. Taken together, these results indicate that XPA and pol eta proteins participate in cell resistance to DOX-treatment, and kinase inhibitors can selectively enhance its killing effects, probably reducing the cell ability to recover from breaks induced in DNA. (C) 2011 Elsevier Ireland Ltd. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)USP-COFECUB (São Paulo, Brazil)Univ São Paulo, Dept Microbiol, Inst Biomed Sci, São Paulo, BrazilUniv Paris Sud, Inst Gustave Roussy, Ctr Natl Rech Sci, UMR8200, Villejuif, FranceFed Univ São Paulo UNIFESP, Dept Biol Sci, Diadema, SP, BrazilUniv Fed Rio Grande do Sul, Ctr Biotechnol, Dept Biophys, Porto Alegre, RS, BrazilFed Univ Hlth Sci Porto Alegre UFCSPA, Dept Basic Hlth Sci, Porto Alegre, RS, BrazilFed Univ São Paulo UNIFESP, Dept Biol Sci, Diadema, SP, BrazilWeb of Scienc

    SN 2006gy: was it really extra-ordinary?

    Full text link
    We present an optical photometric and spectroscopic study of the very luminous type IIn SN 2006gy for a time period spanning more than one year. In photometry, a broad, bright (M_R~-21.7) peak characterizes all BVRI light curves. Afterwards, a rapid luminosity fading is followed by a phase of slow luminosity decline between day ~170 and ~237. At late phases (>237 days), because of the large luminosity drop (>3 mag), only upper visibility limits are obtained in the B, R and I bands. In the near-infrared, two K-band detections on days 411 and 510 open new issues about dust formation or IR echoes scenarios. At all epochs the spectra are characterized by the absence of broad P-Cygni profiles and a multicomponent Halpha profile, which are the typical signatures of type IIn SNe. After maximum, spectroscopic and photometric similarities are found between SN 2006gy and bright, interaction-dominated SNe (e.g. SN 1997cy, SN 1999E and SN 2002ic). This suggests that ejecta-CSM interaction plays a key role in SN 2006gy about 6 to 8 months after maximum, sustaining the late-time-light curve. Alternatively, the late luminosity may be related to the radioactive decay of ~3M_sun of 56Ni. Models of the light curve in the first 170 days suggest that the progenitor was a compact star (R~6-8 10^(12)cm, M_ej~5-14M_sun), and that the SN ejecta collided with massive (6-10M_sun), opaque clumps of previously ejected material. These clumps do not completely obscure the SN photosphere, so that at its peak the luminosity is due both to the decay of 56Ni and to interaction with CSM. A supermassive star is not required to explain the observational data, nor is an extra-ordinarily large explosion energy.Comment: 33 pages, 8 figures. Accepted by ApJ. Paper with high-resolution figures available at http://web.oapd.inaf.it/supern/sn2006gy_astroph/agnoletto_2006gy.pd

    Spectral Evolution of the Extraordinary Type IIn Supernova 2006gy

    Full text link
    We present a detailed analysis of the extremely luminous Type IIn supernova SN2006gy using spectra obtained between days 36 and 237 after explosion. We derive the temporal evolution of the effective temperature, radius, expansion speeds, and bolometric luminosity, as well as the progenitor wind density and total swept-up mass overtaken by the shock. SN2006gy can be interpreted in the context of shock interaction with a dense CSM, but with quite extreme values for the CSM mass of 20 Msun and an explosion kinetic energy of at least 5e51 erg. A key difference between SN2006gy and other SNeIIn is that, owing to its large CSM mass, the interaction region remained opaque much longer. At early times, H-alpha widths suggest that the photosphere is ahead of the shock, and photons diffuse out through the opaque CSM. The pivotal transition to optically thin emission begins around day 110, when we start to see a decrease in the blackbody radius and strengthening tracers of the post-shock shell. From the evolution of pre-shock velocities, we deduce that the CSM was ejected by the progenitor in a 1e49 erg precursor event 8yr before explosion. The large CSM mass rules out models involving stars with initial masses around 10Msun. With the full mass budget, even massive M_ZAMS=30-40 Msun progenitor stars are inadequate. At roughly solar metallicity, substantial mass loss probably occurred during the star's life, so SN 2006gy's progenitor is more consistent with LBV eruptions or pulsational pair-instability ejections in stars with initial masses above 100 Msun. This requires significant revision to current paradigms of massive-star evolution. (abridged)Comment: Really long. 30 pages, 26 figs, appendix. Submitted to ApJ - v2 corrected one referenc

    Supernova 2007bi as a pair-instability explosion

    Get PDF
    Stars with initial masses 10 M_{solar} < M_{initial} < 100 M_{solar} fuse progressively heavier elements in their centres, up to inert iron. The core then gravitationally collapses to a neutron star or a black hole, leading to an explosion -- an iron-core-collapse supernova (SN). In contrast, extremely massive stars (M_{initial} > 140 M_{solar}), if such exist, have oxygen cores which exceed M_{core} = 50 M_{solar}. There, high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs prior to oxygen ignition, and leads to a violent contraction that triggers a catastrophic nuclear explosion. Tremendous energies (>~ 10^{52} erg) are released, completely unbinding the star in a pair-instability SN (PISN), with no compact remnant. Transitional objects with 100 M_{solar} < M_{initial} < 140 M_{solar}, which end up as iron-core-collapse supernovae following violent mass ejections, perhaps due to short instances of the pair instability, may have been identified. However, genuine PISNe, perhaps common in the early Universe, have not been observed to date. Here, we present our discovery of SN 2007bi, a luminous, slowly evolving supernova located within a dwarf galaxy (~1% the size of the Milky Way). We measure the exploding core mass to be likely ~100 M_{solar}, in which case theory unambiguously predicts a PISN outcome. We show that >3 M_{solar} of radioactive 56Ni were synthesized, and that our observations are well fit by PISN models. A PISN explosion in the local Universe indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic limit, perhaps resulting from star formation processes similar to those that created the first stars in the Universe.Comment: Accepted version of the paper appearing in Nature, 462, 624 (2009), including all supplementary informatio
    • …
    corecore