173 research outputs found

    Les coraux scléractiniaires de l'île de Rapa (Polynésie française)

    Get PDF

    Comunidades de peces del atolón de Clipperton (Pacífico oriental tropical) y su relación con la cobertura de corales

    Get PDF
    Clipperton Atoll, one of the most isolated coral reefs worldwide, is of great scientific interest due to its geomorphology and high levels of endemism. This study explored the reef fish assemblage structure of Clipperton Atoll and its relationship with live coral cover. Nine stations were sampled at three sites and three depths (6, 12 and 20 m) around the reef, measuring fish species richness and biomass and hermatypic coral cover (at genus level). We evaluated variation in species richness, biomass and diversity of fish assemblages among sites and depths, as well as the relationship between the entire fish assemblage composition and live coral cover. The results showed that species richness and biomass were similar among sites, but differed across depths, increasing with depth. In contrast, diversity differed among sites but not among depths. Multivariate analyses indicated that fish assemblage composition differed among sites and depths in relation to changes in cover of coral of the genera Pocillopora, Porites, Pavona and Leptoseris, which dominate at different depths. The results showed that fish species richness and diversity were low at Clipperton Atoll and that, in isolated coral reefs with a low habitat heterogeneity and low human disturbance, live coral cover has a significant influence on the spatial variation of the reef fish assemblages. This study highlights the importance of coral habitat structure in shaping coral reef fish assemblages.El atolón de Clipperton, uno de los arrecifes de coral más aislados del mundo, presenta un gran interés científico por su geomorfología y endemismo. Este estudio analizó la estructura de las comunidades de peces de arrecife de este atolón y su relación con la cobertura de coral vivo. Para ello se muestrearon nueve estaciones alrededor del arrecife en tres sitios a tres profundidades (6, 12, 20 m), registrando, la riqueza y biomasa de peces, así como la cobertura de coral hermatípico a nivel de género. Se evaluó la variación de la riqueza, biomasa y diversidad de peces entre sitios y profundidades, así como la relación de la composición y biomasa de peces con la cobertura de coral vivo. Los resultados mostraron que la riqueza y biomasa fueron similares entre los sitios, pero diferentes entre profundidades, ya que incrementan con la profundidad. En contraste, la diversidad difirió entre sitios pero no entre profundidades. Los análisis multidimensionales indicaron que la comunidad de peces fue diferente entre sitios y profundidades, relacionándolo con la cobertura de coral de los géneros Pocillopora, Porites, Pavona y Leptoseris, que dominan a distinta profundidad. Los resultados evidenciaron una baja riqueza y diversidad de peces arrecifales en el atolón de Clipperton. En arrecifes de coral aislados, con baja heterogeneidad de hábitats y poca perturbación humana, la cobertura de coral vivo influye en la variación espacial de las comunidades de peces arrecifales. Este estudio resalta la importancia de la estructura del hábitat de coral en la conformación de las comunidades de peces arrecifales

    A review of selected indicators of particle, nutrient and metal inputs in coral reef lagoon systems

    Get PDF
    This review presents environmental and biological indicators of the impact of three major categories of inputs in coral reef lagoons i.e. particles, nutrients and metals. Information was synthesized to extract well established indicators together with some interesting new concepts currently under development, and to provide the reader with an assessment of their respective advantages and drawbacks. The paper has been organized according to the capacity of three categories of indicators to respond either in a specific or a non specific way to a given source of input. The first section focuses on abiotic indicators which main interest is to respond instantaneously and in a truly specific way to a given source of input. The second and third sections present informations on bioindicators either at the sub-individual level or at the individual to community level, indicator specificity generally decreasing as a direct function of biological or ecological complexity. This review showed that even though significant work has already been done on coral reef ecosystems, much more scientific studies are still needed to answer the growing local demands for simple and truly validated tools to be used in environmental surveys. It is further stressed that, due to the biological and environmental diversity of coral reef lagoons, a preliminary step of on-site validation must be considered as an absolute prerequisite when indicators are planned to be used in the frame of a local environmental monitoring programme

    Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences

    Get PDF
    Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs.Fil: Christie, Alec P.. University of Cambridge; Reino UnidoFil: Abecasis, David. Universidad de Algarve. Centro de Ciencias del Mar; PortugalFil: Adjeroud, Mehdi. Université de Perpignan; Francia. Institut de Recherche Pour Le Developpement; FranciaFil: Alonso, Juan Carlos. Consejo Superior de Investigaciones Científicas. Museo Nacional de Ciencias Naturales; EspañaFil: Amano, Tatsuya. University of Queensland; AustraliaFil: Anton, Alvaro. Universidad del País Vasco. Facultad de Educación de Bilbao; EspañaFil: Baldigo, Barry P.. United States Geological Survey; Estados UnidosFil: Barrientos, Rafael. Universidad Complutense de Madrid; EspañaFil: Bicknell, Jake E.. University of Kent; Reino UnidoFil: Buhl, Deborah A.. United States Geological Survey; Estados UnidosFil: Cebrian, Just. Mississippi State University; Estados UnidosFil: Ceia, Ricardo S.. Universidad de Coimbra; PortugalFil: Cibils Martina, Luciana. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Ciencias Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Clarke, Sarah. Marine Institute; IrlandaFil: Claudet, Joachim. Universite de Paris; Francia. Centre National de la Recherche Scientifique; FranciaFil: Craig, Michael D.. University of Western Australia; Australia. Murdoch University; AustraliaFil: Davoult, Dominique. Sorbonne University; FranciaFil: De Backer, Annelies. Flanders Research Institute for Agriculture, Fisheries and Food; BélgicaFil: Donovan, Mary K.. University of California; Estados Unidos. University of Hawaii at Manoa; Estados UnidosFil: Eddy, Tyler D.. University of South Carolina; Estados Unidos. Memorial University of Newfoundland; Canadá. Victoria University of Wellington; Nueva ZelandaFil: França, Filipe M.. Lancaster University; Reino UnidoFil: Gardner, Jonathan P. A.. Victoria University of Wellington; Nueva ZelandaFil: Harris, Bradley P.. Alaska Pacific University; Estados UnidosFil: Huusko, Ari. Natural Resources Institute Finland; FinlandiaFil: Jones, Ian L.. Memorial University of Newfoundland; CanadáFil: Kelaher, Brendan P.. Southern Cross University; AustraliaFil: Kotiaho, Janne S.. Universidad de Jyvaskyla; FinlandiaFil: López Baucells, Adrià. Universidad de Lisboa; Portugal. Smithsonian Tropical Research Institute; Panamá. Universidad Nacional de Colombia. Instituto de Investigaciones Amazonicas; Colombia. Museo de Ciencias Naturales de Granollers; EspañaFil: Major, Heather L.. University of New Brunswick; CanadáFil: Mäki Petäys, Aki. Voimalohi Oy; Finlandia. University of Oulu; Finlandi

    The projected degradation of subtropical coral assemblages by recurrent thermal stress

    Get PDF
    1. Subtropical coral assemblages are threatened by similar extreme thermal stress events to their tropical counterparts. Yet, the mid‐ and long‐term thermal stress responses of corals in subtropical environments remain largely unquantified, limiting our capacity to predict their future viability. 2. The annual survival, growth and recruitment of 311 individual corals within the Solitary Islands Marine Park (Australia) was recorded over a 3‐year period (2016–2018), including the 2015/2016 thermal stress event. These data were used to parameterise integral projection models quantifying the effect of thermal stress within a subtropical coral assemblage. Stochastic simulations were also applied to evaluate the implications of recurrent thermal stress scenarios predicted by four different Representative Concentration Pathways. 3. We report differential shifts in population growth rates (λ) among coral populations during both stress and non‐stress periods, confirming contrasting bleaching responses among taxa. However, even during non‐stress periods, the observed dynamics for all taxa were unable to maintain current community composition, highlighting the need for external recruitment sources to support the community structure. 4. Across all coral taxa, projected stochastic growth rates (λs) were found to be lowest under higher emissions scenarios. Correspondingly, predicted increases in recurrent thermal stress regimes may accelerate the loss of coral coverage, species diversity and structural complexity within subtropical regions. 5. We suggest that these trends are primarily due to the susceptibility of subtropical specialists and endemic species, such as Pocillopora aliciae, to thermal stress. Similarly, the viability of many tropical coral populations at higher latitudes is highly dependent on the persistence of up‐current tropical systems. As such, the inherent dynamics of subtropical coral populations appear unable to support their future persistence under unprecedented thermal disturbance scenarios

    Acanthaster planci Outbreak: Decline in Coral Health, Coral Size Structure Modification and Consequences for Obligate Decapod Assemblages

    Get PDF
    Although benthic motile invertebrate communities encompass the vast majority of coral reef diversity, their response to habitat modification has been poorly studied. A variety of benthic species, particularly decapods, provide benefits to their coral host enabling them to cope with environmental stressors, and as a result benefit the overall diversity of coral-associated species. However, little is known about how invertebrate assemblages associated with corals will be affected by global perturbations, (either directly or indirectly via their coral host) or their consequences for ecosystem resilience. Analysis of a ten year dataset reveals that the greatest perturbation at Moorea over this time was an outbreak of the corallivorous sea star Acanthaster planci from 2006 to 2009 impacting habitat health, availability and size structure of Pocillopora spp. populations and highlights a positive relationship between coral head size and survival. We then present the results of a mensurative study in 2009 conducted at the end of the perturbation (A. planci outbreak) describing how coral-decapod communities change with percent coral mortality for a selected coral species, Pocillopora eydouxi. The loss of coral tissue as a consequence of A. planci consumption led to an increase in rarefied total species diversity, but caused drastic modifications in community composition driven by a shift from coral obligate to non-obligate decapod species. Our study highlights that larger corals left with live tissue in 2009, formed a restricted habitat where coral obligate decapods, including mutualists, could subsist. We conclude that the size structure of Pocillopora populations at the time of an A. planci outbreak may greatly condition the magnitude of coral mortality as well as the persistence of local populations of obligate decapods

    Low genotypic diversity and long-term ecological decline in a spatially structured seagrass population

    Get PDF
    In isolated or declining populations, viability may be compromised further by loss of genetic diversity. Therefore, it is important to understand the relationship between long-term ecological trajectories and population genetic structure. However, opportunities to combine these types of data are rare, especially in natural systems. Using an existing panel of 15 microsatellites, we estimated allelic diversity in seagrass, Zostera marina, at five sites around the Isles of Scilly Special Area of Conservation, UK, in 2010 and compared this to 23 years of annual ecological monitoring (1996–2018). We found low diversity and long-term declines in abundance in this relatively pristine but isolated location. Inclusion of the snapshot of genotypic, but less-so genetic, diversity improved prediction of abundance trajectories; however, this was spatial scale-dependent. Selection of the appropriate level of genetic organization and spatial scale for monitoring is, therefore, important to identify drivers of eco-evolutionary dynamics. This has implications for the use of population genetic information in conservation, management, and spatial planning

    27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore

    Get PDF
    Coral cover on reefs is declining globally due to coastal development, overfishing and climate change. Reefs isolated from direct human influence can recover from natural acute disturbances, but little is known about long term recovery of reefs experiencing chronic human disturbances. Here we investigate responses to acute bleaching disturbances on turbid reefs off Singapore, at two depths over a period of 27 years. Coral cover declined and there were marked changes in coral and benthic community structure during the first decade of monitoring at both depths. At shallower reef crest sites (3–4 m), benthic community structure recovered towards pre-disturbance states within a decade. In contrast, there was a net decline in coral cover and continuing shifts in community structure at deeper reef slope sites (6–7 m). There was no evidence of phase shifts to macroalgal dominance but coral habitats at deeper sites were replaced by unstable substrata such as fine sediments and rubble. The persistence of coral dominance at chronically disturbed shallow sites is likely due to an abundance of coral taxa which are tolerant to environmental stress. In addition, high turbidity may interact antagonistically with other disturbances to reduce the impact of thermal stress and limit macroalgal growth rates
    corecore