260 research outputs found

    A geometrical calibration method for the PIXSCAN micro-CT scanner

    Get PDF
    Reconstruction in Cone-Beam Tomography can suffer from artifacts due to geometrical misalignments of the source-detector system. They can be avoided by a complete and precise description of the system. We present a high precision method for the geometric calibration for the PIXSCAN, a small animal X-ray CT scanner demonstrator based on hybrid pixel detectors (XPAD2). The specificities of the XPAD2 detectors (dead pixels, tilts and gaps between modules...) made the calibration of the PIXSCAN quite difficult. The method uses a calibration object consisting of a hollow cylinder of polycarbonate on which we positioned four metallic balls. It requires 360 X-ray images (1° increments). An analytic expression of the 3 image ellipses has been derived. It is used for a least square regression of the 13 alignment parameters after a correction of the internal XPAD2 geometry. Our method is fast and completely automated, achieving a precision of about 30 Όm

    Evaluation and Selection of the MEUST Submarine Site

    No full text
    http://meust.cnrs.fr/MEUST_site_choice_report.pdfThis report summarizes the results of the investiga tions performed to select the MEUST submarine site. Measurement campaigns have been conducted during 2012 on several locations off shore of Toulon. During this period the most distant site has s hown a higher sensitivity to bioluminescence seasonal variations, whereas the more coastal sites had simila r conditions as Antares. This observation combined with logistic constraints leads to select a site located at similar latitude as Antares but more western on the other side of the CC5 telecommunication cable to Cors ica. The route of the MEUST Main Electro-Optical Cable has been defined accordingly, with some flexib ility to allow fine tuning of its end point as function of the outcome of the final site characterizations scheduled in 2013

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.

    Insulin-like growth factor 2 (IGF2) protects against Huntington's disease through the extracellular disposal of protein aggregates

    Get PDF
    Impaired neuronal proteostasis is a salient feature of many neurodegenerative diseases, highlighting alterations in the function of the endoplasmic reticulum (ER). We previously reported that targeting the transcription factor XBP1, a key mediator of the ER stress response, delays disease progression and reduces protein aggregation in various models of neurodegeneration. To identify disease modifier genes that may explain the neuroprotective effects of XBP1 deficiency, we performed gene expression profiling of brain cortex and striatum of these animals and uncovered insulin-like growth factor 2 (Igf2) as the major upregulated gene. Here, we studied the impact of IGF2 signaling on protein aggregation in models of Huntington's disease (HD) as proof of concept. Cell culture studies revealed that IGF2 treatment decreases the load of intracellular aggregates of mutant huntingtin and a polyglutamine peptide. These results were validated using induced pluripotent stem cells (iPSC)-derived medium spiny neurons from HD patients and spinocerebellar ataxia cases. The reduction in the levels of mutant huntingtin was associated with a decrease in the half-life of the intracellular protein. The decrease in the levels of abnormal protein aggregation triggered by IGF2 was independent of the activity of autophagy and the proteasome pathways, the two main routes for mutant huntingtin clearance. Conversely, IGF2 signaling enhanced the secretion of soluble mutant huntingtin species through exosomes and microvesicles involving changes in actin dynamics. Administration of IGF2 into the brain of HD mice using gene therapy led to a significant decrease in the levels of mutant huntingtin in three different animal models. Moreover, analysis of human postmortem brain tissue and blood samples from HD patients showed a reduction in IGF2 level. This study identifies IGF2 as a relevant factor deregulated in HD, operating as a disease modifier that buffers the accumulation of abnormal protein species

    The new ALEPH Silicon Vertex Detector

    No full text
    The ALEPH collaboration, in view of the importance of effective vertex detection for the Higgs boson search at LEP 2, decided to upgrade the previous vertex detector. Main changes were an increased length (±20 cm), a higher granularity for rφ view (50 ”m), a new preamplifier (MX7 rad hard chip), a polymide (upilex) fan-out on z side to carry the signals from the strips to the front-end electronics outside the fiducial region reducing consequently the passive material in the central region by a factor of two. The detector, the running experience and its performance will be described

    The new ALEPH Silicon Vertex Detector

    No full text
    The ALEPH collaboration, in view of the importance of effective vertex detection for the Higgs boson search at LEP 2, decided to upgrade the previous vertex detector. Main changes were an increased length (±20 cm), a higher granularity for rφ view (50 ”m), a new preamplifier (MX7 rad hard chip), a polymide (upilex) fan-out on z side to carry the signals from the strips to the front-end electronics outside the fiducial region reducing consequently the passive material in the central region by a factor of two. The detector, the running experience and its performance will be described

    Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling

    Get PDF
    KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea. It will house a neutrino telescope comprising hundreds of networked moorings — detection units or strings — equipped with optical instrumentation to detect the Cherenkov radiation generated by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings typically used for oceanography, several key features of the KM3NeT string are different: the instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema¼ ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper wires for data and power transmission, respectively, runs along the full length of the mooring. Also, compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings, a custom-made, fast deployment method was designed. Despite the length of several hundreds of metres, the slim design of the string allows it to be compacted into a small, re-usable spherical launching vehicle instead of deploying the mooring weight down from a surface vessel. After being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle rolling along the two ropes. The design of the vehicle, the loading with a string, and its underwater self-unrolling are detailed in this paper
    • 

    corecore