99 research outputs found

    Competitive Adsorption of Potential-determining Ions and Neutral Molecules by (Agl)n

    Get PDF
    The density of the charges of (AgI)n is in direct relation with the concentration of the potential determining ions (Ag+, i-), reaching its maximum at 1.1 ions per nm2, and is in inverse relation with the adsorption of neutral molecules (aliphatic alcohol). The adsorption of aliphatic alcohol (which reaches its maximum at 0.57 molecules per nm2 on the left side of the pzc) is in inverse relation with the adsorption of the potential determining ions. The adsorption of 1 molecule of alcohol is accompanied by desorption of 2 ions and vice versa

    Automated reasoning on feature models

    Get PDF
    Software Product Line (SPL) Engineering has proved to be an effective method for software production. However, in the SPL community it is well recognized that variability in SPLs is increasing by the thousands. Hence, an automatic support is needed to deal with variability in SPL. Most of the current proposals for automatic reasoning on SPL are not devised to cope with extra– functional features. In this paper we introduce a proposal to model and reason on an SPL using constraint programming. We take into account functional and extra–functional features, improve current proposals and present a running, yet feasible implementation

    Full-Scale System for Quantifying Loads and Leak Rates of Seals for Space Applications

    Get PDF
    NASA is developing advanced space-rated vacuum seals in support of future space exploration missions to low-Earth orbit and other destinations. These seals may be 50 to 60 in. (127 to 152 cm) in diameter and must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions to the International Space Station or the Moon. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them during docking or mating, and seal adhesion forces must be low to allow two mated systems to separate when required. NASA Glenn Research Center has developed a new test apparatus to measure leak rates and compression and adhesion loads of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Tests can be performed in seal-on-seal or seal-on-flange configurations at temperatures from -76 to 140 F (-60 to 60 C) under operational pressure gradients. Nominal and off-nominal mating conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features of the test apparatus as well as techniques used to overcome some of the design challenges

    Review of Full-Scale Docking Seal Testing Capabilities

    Get PDF
    NASA is developing a new docking system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System (LIDS), is designed to connect pressurized space vehicles and structures including the Crew Exploration Vehicle, International Space Station, and lunar lander. NASA Glenn Research Center (GRC) is playing a key role in developing the main interface seal for this new docking system. These seals will be approximately 147 cm (58 in.) in diameter. To evaluate the performance of the seals under simulated operating conditions, NASA GRC is developing two new test rigs: a non-actuated version that will be used to measure seal leak rates and an actuated test rig that will be able to measure both seal leak rates and loads. Both test rigs will be able to evaluate the seals under seal-on-seal or seal-on-plate configurations at temperatures from -50 to 50 C (-58 to 122 F) under operational and pre-flight checkout pressure gradients in both aligned and misaligned conditions

    Full-Scale System for Quantifying Leakage of Docking System Seals for Space Applications

    Get PDF
    NASA is developing a new docking and berthing system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System, is designed to connect pressurized space vehicles and structures. NASA Glenn Research Center is playing a key role in developing advanced technology for the main interface seal for this new docking system. The baseline system is designed to have a fully androgynous mating interface, thereby requiring a seal-on-seal configuration when two systems mate. These seals will be approximately 147 cm (58 in.) in diameter. NASA Glenn has designed and fabricated a new test fixture which will be used to evaluate the leakage of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. This includes testing under seal-on-seal or seal-on-plate configurations, temperatures from -50 to 50 C (-58 to 122 F), operational and pre-flight checkout pressure gradients, and vehicle misalignment (plus or minus 0.381 cm (0.150 in.)) and gapping (up to 0.10 cm (0.040 in.)) conditions. This paper describes the main design features of the test rig and techniques used to overcome some of the design challenges

    Overview of NASA Glenn Seal Project

    Get PDF
    NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage by applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. Advanced docking system seals need to be very robust resisting space environmental effects while exhibiting very low leakage and low compression and adhesion forces. NASA Glenn is developing seal technology and providing technical consultation for the Agencys key aero- and space technology development programs

    Gravity-driven instabilities: interplay between state-and-velocity dependent frictional sliding and stress corrosion damage cracking

    Full text link
    We model the progressive maturation of a heterogeneous mass towards a gravity-driven instability, characterized by the competition between frictional sliding and tension cracking, using array of slider blocks on an inclined basal surface, which interact via elastic-brittle springs. A realistic state- and rate-dependent friction law describes the block-surface interaction. The inner material damage occurs via stress corrosion. Three regimes, controlling the mass instability and its precursory behavior, are classified as a function of the ratio Tc/TfT_c/T_f of two characteristic time scales associated with internal damage/creep and with frictional sliding. For Tc/Tf1T_c/T_f \gg 1, the whole mass undergoes a series of internal stick and slip events, associated with an initial slow average downward motion of the whole mass, and progressively accelerates until a global coherent runaway is observed. For Tc/Tf1T_c/T_f \ll 1, creep/damage occurs sufficiently fast compared with nucleation of sliding, causing bonds to break, and the bottom part of the mass undergoes a fragmentation process with the creation of a heterogeneous population of sliding blocks. For the intermediate regime Tc/Tf1T_c/T_f \sim 1, a macroscopic crack nucleates and propagates along the location of the largest curvature associated with the change of slope from the stable frictional state in the upper part to the unstable frictional sliding state in the lower part. The other important parameter is the Young modulus YY which controls the correlation length of displacements in the system.Comment: 40 pages, 13 figure

    Landslide activity maps for landslide hazard evaluation: Three case studies from Southern Italy

    No full text
    This paper focuses on the application of landslide activity maps for evaluating the mass movement hazard in selected areas of the Southern Apennines of Italy: Bisaccia, Calitri, and Buoninventre. The availability of multi-year aerial photo coverage helped to assess the morphological changes which occurred in the last 40 years. This information, integrated with historical data on slope instability and field checks, were used to produce landslide activity maps. These maps represent a short-cut in the assessment of mass movement hazard, because they focus on the effects of slope instability rather than on the causative conditions and processes; however, if kept simple and prepared at large scale, they may help the local administrators and land-use planners to reduce the socio-economic costs of landslides. Furthermore, the comparative study of landslide activity represents a relatively inexpensive and quick method for evaluating the performance of the engineering control efforts. The quantification of landslide activity in terms of areal frequency can represent an additional step, useful to determine the relative landslide hazard (zonation in more or less hazardous areas). For example, the estimates of areal frequency of active landsliding for the last 40 years demonstrated the great influence of the 1980 Irpinia earthquake (M(s) = 6.9) on the stability of slopes situated close to its epicenter (within a radius of about 20 km)
    corecore