711 research outputs found

    Hydrodynamic fingering instability of driven wetting films: hindrance by diffusion

    Get PDF
    Recent experimental and theoretical efforts have revealed the existence of a fingering instability at the moving front of thin liquid films forced to spread under gravitational, rotational or surface shear stresses, as for example by using the Marangoni effect. The authors describe how the presence of a precursor film in front of the spreading macroscopic film, whether it is by prewetting the substrate or by surface diffusion or multilayer absorption, can prevent the development of the instability

    Simulations of Solid-on-Solid Models of Spreading of Viscous Droplets

    Full text link
    We have studied the dynamics of spreading of viscous non-volatile fluids on surfaces by MC simulations of SOS models. We have concentrated on the complete wetting regime, with surface diffusion barriers neglected for simplicity. First, we have performed simulations for the standard SOS model. Formation of a single precursor layer, and a density profile with a spherical cap shaped center surrounded by Gaussian tails can be reproduced with this model. Dynamical layering (DL), however, only occurs with a very strongly attractive van der Waals type of substrate potential. To more realistically describe the spreading of viscous liquid droplets, we introduce a modified SOS model. In the new model, tendency for DL and the effect of the surface potential are in part embedded into the dynamics of the model. This allows a relatively simple description of the spreading under different conditions, with a temperature like parameter which strongly influences the droplet morphologies. Both rounded droplet shapes and DL can easily be reproduced with the model. Furthermore, the precursor width increases proportional to the square root of time, in accordance with experimental observations. PACS: 68.10.Gw, 05.70.Ln, 61.20.Ja.Comment: to appear in Physica A (1994), standard LaTex, 20 page

    Quantum Superposition Principle and Geometry

    Full text link
    If one takes seriously the postulate of quantum mechanics in which physical states are rays in the standard Hilbert space of the theory, one is naturally lead to a geometric formulation of the theory. Within this formulation of quantum mechanics, the resulting description is very elegant from the geometrical viewpoint, since it allows to cast the main postulates of the theory in terms of two geometric structures, namely a symplectic structure and a Riemannian metric. However, the usual superposition principle of quantum mechanics is not naturally incorporated, since the quantum state space is non-linear. In this note we offer some steps to incorporate the superposition principle within the geometric description. In this respect, we argue that it is necessary to make the distinction between a 'projective superposition principle' and a 'decomposition principle' that extend the standard superposition principle. We illustrate our proposal with two very well known examples, namely the spin 1/2 system and the two slit experiment, where the distinction is clear from the physical perspective. We show that the two principles have also a different mathematical origin within the geometrical formulation of the theory.Comment: 10 pages, no figures. References added. V3 discussion expanded and new results added, 14 pages. Dedicated to Michael P. Ryan on the occasion of his sixtieth bithda

    Exponential families, Kahler geometry and quantum mechanics

    Full text link
    Exponential families are a particular class of statistical manifolds which are particularly important in statistical inference, and which appear very frequently in statistics. For example, the set of normal distributions, with mean {\mu} and deviation {\sigma}, form a 2-dimensional exponential family. In this paper, we show that the tangent bundle of an exponential family is naturally a Kahler manifold. This simple but crucial observation leads to the formalism of quantum mechanics in its geometrical form, i.e. based on the Kahler structure of the complex projective space, but generalizes also to more general Kahler manifolds, providing a natural geometric framework for the description of quantum systems. Many questions related to this "statistical Kahler geometry" are discussed, and a close connection with representation theory is observed. Examples of physical relevance are treated in details. For example, it is shown that the spin of a particle can be entirely understood by means of the usual binomial distribution. This paper centers on the mathematical foundations of quantum mechanics, and on the question of its potential generalization through its geometrical formulation

    Dynamics of Spreading of Chainlike Molecules with Asymmetric Surface Interactions

    Full text link
    In this work we study the spreading dynamics of tiny liquid droplets on solid surfaces in the case where the ends of the molecules feel different interactions with respect to the surface. We consider a simple model of dimers and short chainlike molecules that cannot form chemical bonds with the surface. We use constant temperature Molecular Dynamics techniques to examine in detail the microscopic structure of the time dependent precursor film. We find that in some cases it can exhibit a high degree of local order that can persist even for flexible chains. Our model also reproduces the experimentally observed early and late-time spreading regimes where the radius of the film grows proportional to the square root of time. The ratios of the associated transport coefficients are in good overall agreement with experiments. Our density profiles are also in good agreement with measurements on the spreading of molecules on hydrophobic surfaces.Comment: 12 pages, LaTeX with APS macros, 21 figures available by contacting [email protected], to appear in Phys. Rev.

    Convergence to equilibrium for many particle systems

    Full text link
    The goal of this paper is to give a short review of recent results of the authors concerning classical Hamiltonian many particle systems. We hope that these results support the new possible formulation of Boltzmann's ergodicity hypothesis which sounds as follows. For almost all potentials, the minimal contact with external world, through only one particle of NN, is sufficient for ergodicity. But only if this contact has no memory. Also new results for quantum case are presented

    Dewetting, partial wetting and spreading of a two-dimensional monolayer on solid surface

    Full text link
    We study the behavior of a semi-infinite monolayer, which is placed initially on a half of an infinite in both directions, ideal crystalline surface, and then evolves in time due to random motion of the monolayer particles. Particles dynamics is modeled as the Kawasaki particle-vacancy exchange process in the presence of long-range attractive particle-particle interactions. In terms of an analytically solvable mean-field-type approximation we calculate the mean displacement X(t) of the monolayer edge and discuss the conditions under which such a monolayer spreads (X(t) > 0), partially wets (X(t) = 0) or dewets from the solid surface (X(t) < 0).Comment: 4 pages, 2 figures, to appear in PRE (RC

    Dynamical fluctuations in classical adiabatic processes: General description and their implications

    Full text link
    Dynamical fluctuations in classical adiabatic processes are not considered by the conventional classical adiabatic theorem. In this work a general result is derived to describe the intrinsic dynamical fluctuations in classical adiabatic processes. Interesting implications of our general result are discussed via two subtopics, namely, an intriguing adiabatic geometric phase in a dynamical model with an adiabatically moving fixed-point solution, and the possible "pollution" to Hannay's angle or to other adiabatic phase objects for adiabatic processes involving non-fixed-point solutions.Comment: 19 pages, no figures, discussion significantly expanded, published versio
    corecore