178 research outputs found
Recommended from our members
ApoC-III and visceral adipose tissue contribute to paradoxically normal triglyceride levels in insulin-resistant African-American women
Background: African-Americans are more insulin-resistant than whites but have lower triglyceride (TG) concentrations. The metabolic basis for this is unknown. Our goal was to determine in a cross-sectional study the effect of insulin resistance, visceral adipose tissue (VAT) and the apolipoproteins, B, C-III and E, on race differences in TG content of very low density lipoproteins (VLDL). Methods: The participants were 31 women (16 African-American, 15 white) of similar age (37 ± 9 vs. 38 ± 11y (mean ± SD), P = 0.72) and BMI (32.4 ± 7.2 vs. 29.3 ± 6.0 kg/m2, P = 0.21). A standard diet (33% fat, 52% carbohydrate, 15% protein) was given for 7 days followed by a test meal (40% fat, 40% carbohydrate, 20% protein) on Day 8. Insulin sensitivity index (SI) was calculated from the minimal model. VAT was measured at L2-3. The influence of race, SI, VAT and apolipoproteins on the TG content of VLDL was determined by random effects models (REM). Results: African-Americans were more insulin-resistant (SI: 3.6 ± 1.3 vs. 5.6 ± 2.6 mU/L-1.min-1, P < 0.01) with less VAT (75 ± 59 vs. 102 ± 71 cm2, P < 0.01). TG, apoB and apoC-III content of light and dense VLDL were lower in African-Americans (all P < 0.05 except for apoC-III in light VLDL, P = 0.11). ApoE content did not vary by race. In REM, VAT but not SI influenced the TG concentration of VLDL. In models with race, SI, VAT and all apolipoproteins entered, race was not significant but apoC-III and VAT remained significant determinants of TG concentration in light and dense VLDL. Conclusions: Low concentrations of apoC-III and VAT in African-Americans contribute to race differences in TG concentrations. Trial registration ClinicalTrials.gov Identifier: NCT0048486
Prevalence of prehypertension and its relationship to risk factors for cardiovascular disease in Jamaica: Analysis from a cross-sectional survey
<p>Abstract</p> <p>Background</p> <p>Recent studies have documented an increased risk of cardiovascular disease (CVD) in persons with systolic blood pressures of 120–139 mmHg and/or diastolic blood pressures of 80–89 mmHg, classified as prehypertension in the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. In this paper we estimate the prevalence of prehypertension in Jamaica and evaluate the relationship between prehypertension and other risk factors for CVD.</p> <p>Methods</p> <p>The study used data from participants in the Jamaica Lifestyle Survey conducted from 2000–2001. A sample of 2012 persons, 15–74 years old, completed an interviewer administered questionnaire and had anthropometric and blood pressure measurements performed by trained observers using standardized procedures. Fasting glucose and total cholesterol were measured using a capillary blood sample. Analysis yielded crude, and sex-specific prevalence estimates for prehypertension and other CVD risk factors. Odds ratios for associations of prehypertension with CVD risk factors were obtained using logistic regression.</p> <p>Results</p> <p>The prevalence of prehypertension among Jamaicans was 30% (95% confidence interval [CI] 27%–33%). Prehypertension was more common in males, 35% (CI 31%–39%), than females, 25% (CI 22%–28%). Almost 46% of participants were overweight; 19.7% were obese; 14.6% had hypercholesterolemia; 7.2% had diabetes mellitus and 17.8% smoked cigarettes. With the exception of cigarette smoking and low physical activity, all the CVD risk factors had significantly higher prevalence in the prehypertensive and hypertensive groups (p for trend < 0.001) compared to the normotensive group. Odds of obesity, overweight, high cholesterol and increased waist circumference were significantly higher among younger prehypertensive participants (15–44 years-old) when compared to normotensive young participants, but not among those 45–74 years-old. Among men, being prehypertensive increased the odds of having >/=3 CVD risk factors versus no risk factors almost three-fold (odds ratio [OR] 2.8 [CI 1.1–7.2]) while among women the odds of >/=3 CVD risk factors was increased two-fold (OR 2.0 [CI 1.3–3.8])</p> <p>Conclusion</p> <p>Prehypertension occurs in 30% of Jamaicans and is associated with increased prevalence of other CVD risk factors. Health-care providers should recognize the increased CVD risk of prehypertension and should seek to identify and treat modifiable risk factors in these persons.</p
Assessing prediction of diabetes in older adults using different adiposity measures: a 7 year prospective study in 6,923 older men and women
The aim of this study was to examine whether waist circumference (WC) or WHR improve diabetes prediction beyond body mass index in older men and women, and to define optimal cut-off points. In this prospective study, non-diabetic men (n = 3,519) and women (n = 3,404) aged 60-79 years were followed up for 7 years. There were 169 and 128 incident cases of type 2 diabetes in men and women, respectively. BMI, WC and WHR all showed strong associations with incident type 2 diabetes independent of potential confounders. In men, the adjusted relative risks (top vs lowest quartile) were 4.71 (95% CI 2.45-9.03) for BMI, 3.53 (95% CI 1.92-6.48) for WC and 2.76 (95% CI 1.58-4.82) for WHR. For women, the corresponding relative risks were 4.10 (95% CI 2.16-7.79), 12.18 (95% CI 4.83-30.74) and 5.61 (95% CI 2.84-11.09) for BMI, WC and WHR, respectively. Receiver-operating characteristic curve analysis revealed similar associations for BMI and WC in predicting diabetes in men (AUC = 0.726 and 0.713, respectively); WHR was the weakest predictor (AUC = 0.656). In women, WC was a significantly stronger predictor (AUC = 0.780) than either BMI (AUC = 0.733) or WHR (AUC = 0.728; p < 0.01 for both). Inclusion of both WC and BMI did not improve prediction beyond BMI alone in men or WC alone in women. Optimal sensitivity and specificity for the prediction of type 2 diabetes was observed at a WC of 100 cm in men and 92 cm in women. In older men, BMI and WC yielded similar prediction of risk of type 2 diabetes, whereas WC was clearly a superior predictor in older wome
Primary care provider perceptions of intake transition records and shared care with outpatient cardiac rehabilitation programs
Abstract
Background
While it is recommended that records are kept between primary care providers (PCPs) and specialists during patient transitions from hospital to community care, this communication is not currently standardized. We aimed to assess the transmission of cardiac rehabilitation (CR) program intake transition records to PCPs and to explore PCPs' needs in communication with CR programs and for intake transition record content.
Method
144 PCPs of consenting enrollees from 8 regional and urban Ontario CR programs participated in this cross-sectional study. Intake transition records were tracked from the CR program to the PCP's office. Sixty-six PCPs participated in structured telephone interviews.
Results
Sixty-eight (47.6%) PCPs received a CR intake transition record. Fifty-eight (87.9%) PCPs desired intake transition records, with most wanting it transmitted via fax (n = 52, 78.8%). On a 5-point Likert scale, PCPs strongly agreed that the CR transition record met their needs for providing patient care (4.32 ± 0.61), with 48 (76.2%) reporting that it improved their management of patients' cardiac risk. PCPs rated the following elements as most important to include in an intake transition record: clinical status (4.67 ± 0.64), exercise test results (4.61 ± 0.52), and the proposed patient care plan (4.59 ± 0.71).
Conclusions
Less than half of intake transition records are reaching PCPs, revealing a large gap in continuity of patient care. PCP responses should be used to develop an evidence-based intake transition record, and procedures should be implemented to ensure high-quality transitional care
Appropriate waist circumference cut points for identifying insulin resistance in black youth: a cross sectional analysis of the 1986 Jamaica birth cohort
Background While the International Diabetes Federation (IDF) has ethnic specific waist circumference (WC) cut-points for the metabolic syndrome for Asian populations it is not known whether the cut-points for black populations should differ from those for European populations. We examined the validity of IDF WC cut points for identifying insulin resistance (IR), the underlying cause of the metabolic syndrome, in predominantly black, young Jamaican adults. Methods Participants from a 1986 birth cohort were evaluated between 2005 and 2007 when they were 18-20 years old. Trained observers took anthropometric measurements and collected a fasting blood sample. IR was assessed using the homeostasis model assessment computer programme (HOMA-IR). Sex specific quartiles for IR were generated using HOMA-IR values and participants in the highest quartile were classified as "insulin resistant". Receiver operator characteristic (ROC) curves were used to estimate the best WC to identify insulin resistance. The sensitivity and specificity of these values were compared with the IDF recommended WC cut-points. Results Data from 707 participants (315 males; 392females) were analysed. In both sexes those with IR were more obese, had higher mean systolic blood pressure, glucose and triglycerides and lower mean HDL cholesterol. The WC was a good predictor of IR with an ROC area under the curve (95% CI) of 0.71(0.64,0.79) for men and 0.72(0.65,0.79) for women. Using the Youden Index (J) the best WC cut point for identifying IR in male participants was 82 cm (sensitivity 45%, specificity 93%, J 0.38) while the standard cut point of 94 cm had a sensitivity of 14% and specificity of 98% (J 0.12). In the female participants 82 cm was also a good cut point for identifying IR (sensitivity 52%, specificity 87%, J 0.39) and was similar to the standard IDF 80 cm cut point (sensitivity 53%, specificity 82%, J 0.35). Conclusions The WC that identified IR in young black men is lower than the IDF recommended WC cut point. Sex differences in WC cut points for identifying IR were less marked in this population than in other ethnic groups
Blood Viscosity and Hematocrit as Risk Factors for Type 2 Diabetes Mellitus: The Atherosclerosis Risk in Communities (ARIC) Study
Several lines of evidence support the notion that elevated blood viscosity may predispose to insulin resistance and type 2 diabetes mellitus by limiting delivery of glucose, insulin, and oxygen to metabolically active tissues. To test this hypothesis, the authors analyzed longitudinal data on 12,881 initially nondiabetic adults, aged 45–64 years, who were participants in the Atherosclerosis Risk in Communities (ARIC) Study (1987–1998). Whole blood viscosity was estimated by using a validated formula based on hematocrit and total plasma proteins at baseline. At baseline, estimated blood viscosity was independently associated with several features of the metabolic syndrome. In models adjusted simultaneously for known predictors of diabetes, estimated whole blood viscosity and hematocrit predicted incident type 2 diabetes mellitus in a graded fashion (Ptrend (linear) < 0.001): Compared with their counterparts in the lowest quartiles, adults in the highest quartile of blood viscosity (hazard ratio = 1.68, 95% confidence interval: 1.53, 1.84) and hematocrit (hazard ratio = 1.63, 95% confidence interval: 1.49, 1.79) were over 60% more likely to develop diabetes. Therefore, elevated blood viscosity and hematocrit deserve attention as emerging risk factors for insulin resistance and type 2 diabetes mellitus
Primary stroke prevention worldwide : translating evidence into action
Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis ?erimagi? (Poliklinika Glavi?, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo Ant?nio, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Cz?onkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), Jo?o Sargento-Freitas (Centro Hospitalar e Universit?rio de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gon?alves (Hospital S?o Jos? do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurj?ns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gda?sk, Gda?sk, Poland), Kursad Kutluk (Dokuz Eylul University, ?zmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Micha? Maluchnik (Ministry of Health, Warsaw, Poland), Evija Migl?ne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gda?sk, Gda?sk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis Čerimagić (Poliklinika Glavić, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo António, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Członkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), João Sargento-Freitas (Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gonçalves (Hospital São José do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurjāns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gdańsk, Gdańsk, Poland), Kursad Kutluk (Dokuz Eylul University, İzmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Michał Maluchnik (Ministry of Health, Warsaw, Poland), Evija Miglāne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gdańsk, Gdańsk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: VLF declares that the PreventS web app and Stroke Riskometer app are owned and copyrighted by Auckland University of Technology; has received grants from the Brain Research New Zealand Centre of Research Excellence (16/STH/36), Australian National Health and Medical Research Council (NHMRC; APP1182071), and World Stroke Organization (WSO); is an executive committee member of WSO, honorary medical director of Stroke Central New Zealand, and CEO of New Zealand Stroke Education charitable Trust. AGT declares funding from NHMRC (GNT1042600, GNT1122455, GNT1171966, GNT1143155, and GNT1182017), Stroke Foundation Australia (SG1807), and Heart Foundation Australia (VG102282); and board membership of the Stroke Foundation (Australia). SLG is funded by the National Health Foundation of Australia (Future Leader Fellowship 102061) and NHMRC (GNT1182071, GNT1143155, and GNT1128373). RM is supported by the Implementation Research Network in Stroke Care Quality of the European Cooperation in Science and Technology (project CA18118) and by the IRIS-TEPUS project from the inter-excellence inter-cost programme of the Ministry of Education, Youth and Sports of the Czech Republic (project LTC20051). BN declares receiving fees for data management committee work for SOCRATES and THALES trials for AstraZeneca and fees for data management committee work for NAVIGATE-ESUS trial from Bayer. All other authors declare no competing interests. Publisher Copyright: © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseStroke is the second leading cause of death and the third leading cause of disability worldwide and its burden is increasing rapidly in low-income and middle-income countries, many of which are unable to face the challenges it imposes. In this Health Policy paper on primary stroke prevention, we provide an overview of the current situation regarding primary prevention services, estimate the cost of stroke and stroke prevention, and identify deficiencies in existing guidelines and gaps in primary prevention. We also offer a set of pragmatic solutions for implementation of primary stroke prevention, with an emphasis on the role of governments and population-wide strategies, including task-shifting and sharing and health system re-engineering. Implementation of primary stroke prevention involves patients, health professionals, funders, policy makers, implementation partners, and the entire population along the life course.publishersversionPeer reviewe
Genome-Wide Linkage Scan to Identify Loci Associated with Type 2 Diabetes and Blood Lipid Phenotypes in the Sikh Diabetes Study
In this investigation, we have carried out an autosomal genome-wide linkage analysis to map genes associated with type 2 diabetes (T2D) and five quantitative traits of blood lipids including total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) cholesterol, and triglycerides in a unique family-based cohort from the Sikh Diabetes Study (SDS). A total of 870 individuals (526 male/344 female) from 321 families were successfully genotyped using 398 polymorphic microsatellite markers with an average spacing of 9.26 cM on the autosomes. Results of non-parametric multipoint linkage analysis using Sall statistics (implemented in Merlin) did not reveal any chromosomal region to be significantly associated with T2D in this Sikh cohort. However, linkage analysis for lipid traits using QTL-ALL analysis revealed promising linkage signals with p≤0.005 for total cholesterol, LDL cholesterol, and HDL cholesterol at chromosomes 5p15, 9q21, 10p11, 10q21, and 22q13. The most significant signal (p = 0.0011) occurred at 10q21.2 for HDL cholesterol. We also observed linkage signals for total cholesterol at 22q13.32 (p = 0.0016) and 5p15.33 (p = 0.0031) and for LDL cholesterol at 10p11.23 (p = 0.0045). Interestingly, some of linkage regions identified in this Sikh population coincide with plausible candidate genes reported in recent genome-wide association and meta-analysis studies for lipid traits. Our study provides the first evidence of linkage for loci associated with quantitative lipid traits at four chromosomal regions in this Asian Indian population from Punjab. More detailed examination of these regions with more informative genotyping, sequencing, and functional studies should lead to rapid detection of novel targets of therapeutic importance
Transitions of cardio-metabolic risk factors in the Americas between 1980 and 2014
Describing the prevalence and trends of cardiometabolic risk factors that are associated with non-communicable diseases (NCDs) is crucial for monitoring progress, planning prevention, and providing evidence to support policy efforts. We aimed to analyse the transition in body-mass index (BMI), obesity, blood pressure, raised blood pressure, and diabetes in the Americas, between 1980 and 2014
- …