136 research outputs found

    The Shape and Scale of Galactic Rotation from Cepheid Kinematics

    Get PDF
    A catalog of Cepheid variables is used to probe the kinematics of the Galactic disk. Radial velocities are measured for eight distant Cepheids toward l = 300; these new Cepheids provide a particularly good constraint on the distance to the Galactic center, R_0. We model the disk with both an axisymmetric rotation curve and one with a weak elliptical component, and find evidence for an ellipticity of 0.043 +/- 0.016 near the Sun. Using these models, we derive R_0 = 7.66 +/- 0.32 kpc and v_circ = 237 +/- 12 km/s. The distance to the Galactic center agrees well with recent determinations from the distribution of RR Lyrae variables, and disfavors most models with large ellipticities at the solar orbit.Comment: 36 pages, LaTeX, 10 figure

    Microlensing of circumstellar envelopes III. Line profiles from stellar winds in homologous expansion

    Get PDF
    This paper examines line profile evolution due to the linear expansion of circumstellar material obsverved during a microlensing event. This work extends our previous papers on emission line profile evolution from radial and azimuthal flow during point mass lens events and fold caustic crossings. Both "flavours" of microlensing were shown to provide effective diagnostics of bulk motion in circumstellar envelopes. In this work a different genre of flow is studied, namely linear homologous expansion, for both point mass lenses and fold caustic crossings. Linear expansion is of particular relevance to the effects of microlensing on supernovae at cosmological distances. We derive line profiles and equivalent widths for the illustrative cases of pure resonance and pure recombination lines, modelled under the Sobolev approximation. The efficacy of microlensing as a diagnostic probe of the stellar environs is demonstrated and discussed

    First HARPSpol discoveries of magnetic fields in massive stars

    Get PDF
    In the framework of the Magnetism in Massive Stars (MiMeS) project, a HARPSpol Large Program at the 3.6m-ESO telescope has recently started to collect high-resolution spectropolarimetric data of a large number of Southern massive OB stars in the field of the Galaxy and in many young clusters and associations. In this Letter, we report on the first discoveries of magnetic fields in two massive stars with HARPSpol - HD 130807 and HD 122451, and confirm the presence of a magnetic field at the surface of HD 105382 that was previously observed with a low spectral resolution device. The longitudinal magnetic field measurements are strongly varying for HD 130807 from \sim-100 G to \sim700 G. Those of HD 122451 and HD 105382 are less variable with values ranging from \sim-40 to -80 G, and from \sim-300 to -600 G, respectively. The discovery and confirmation of three new magnetic massive stars, including at least two He-weak stars, is an important contribution to one of the MiMeS objectives: the understanding of origin of magnetic fields in massive stars and their impacts on stellar structure and evolution.Comment: 4 pages, 2 figures, accepted for publication in A&A Lette

    Fundamental parameters of Cepheids. V. Additional photometry and radial velocity for southern Cepheids

    Get PDF
    I present photometric and radial velocity data for Galactic Cepheids, most of them being in the southern hemisphere. There are 1250 Geneva 7-color photometric measurements for 62 Cepheids, the average uncertainty per measurement is better than 0.01 mag. A total of 832 velocity measurements have been obtained with the CORAVEL radial velocity spectrograph for 46 Cepheids. The average accuracy of the radial velocity data is 0.38 km/s. There are 33 stars with both photometry and radial velocity data. I discuss the possible binarity or period change that these new data reveal. I also present reddenings for all Cepheids with photometry. The data are available electronically.Comment: To appear in ApJS. Data available electronically at ftp://cfa-ftp.harvard.edu/pub/dbersier

    “some kind of thing it aint us but yet its in us”: David Mitchell, Russell Hoban, and metafiction after the millennium

    Get PDF
    This article appraises the debt that David Mitchell’s Cloud Atlas owes to the novels of Russell Hoban, including, but not limited to, Riddley Walker. After clearly mapping a history of Hoban’s philosophical perspectives and Mitchell’s inter-textual genre-impersonation practice, the article assesses the degree to which Mitchell’s metatextual methods indicate a nostalgia for by-gone radical aesthetics rather than reaching for new modes of its own. The article not only proposes several new backdrops against which Mitchell’s novel can be read but also conducts the first in-depth appraisal of Mitchell’s formal linguistic replication of Riddley Walker

    A dominant magnetic dipole for the evolved Ap star candidate EK Eridani

    Full text link
    EK Eri is one of the most slowly rotating active giants known, and has been proposed to be the descendant of a strongly magnetic Ap star. We have performed a spectropolarimetric study of EK Eri over 4 photometric periods with the aim of inferring the topology of its magnetic field. We used the NARVAL spectropolarimeter at the Bernard Lyot telescope at the Pic du Midi Observatory, along with the least-squares deconvolution method, to extract high signal-to-noise ratio Stokes V profiles from a timeseries of 28 polarisation spectra. We have derived the surface-averaged longitudinal magnetic field Bl. We fit the Stokes V profiles with a model of the large-scale magnetic field and obtained Zeeman Doppler images of the surface magnetic strength and geometry. Bl variations of up to about 80 G are observed without any reversal of its sign, and which are in phase with photometric ephemeris. The activity indicators are shown to vary smoothly on a timescale compatible with the rotational period inferred from photometry (308.8 d.), however large deviations can occur from one rotation to another. The surface magnetic field variations of EK Eri appear to be dominated by a strong magnetic spot (of negative polarity) which is phased with the dark (cool) photometric spot. Our modeling shows that the large-scale magnetic field of EK Eri is strongly poloidal. For a rotational axis inclination of i = 60{\deg}, we obtain a model that is almost purely dipolar. In the dipolar model, the strong magnetic/photometric spot corresponds to the negative pole of the dipole, which could be the remnant of that of an Ap star progenitor of EK Eri. Our observations and modeling conceptually support this hypothesis, suggesting an explanation of the outstanding magnetic properties of EK Eri as the result of interaction between deep convection and the remnant of an Ap star magnetic dipole.Comment: 8 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Revisiting the Rigidly Rotating Magnetosphere model for sigma Ori E. I. Observations and Data Analysis

    Full text link
    We have obtained 18 new high-resolution spectropolarimetric observations of the B2Vp star sigma Ori E with both the Narval and ESPaDOnS spectropolarimeters. The aim of these observations is to test, with modern data, the assumptions of the Rigidly Rotating Magnetosphere (RRM) model of Townsend & Owocki (2005), applied to the specific case of sigma Ori E by Townsend et al. (2005). This model includes a substantially offset dipole magnetic field configuration, and approximately reproduces previous observational variations in longitudinal field strength, photometric brightness, and Halpha emission. We analyze new spectroscopy, including H I, He I, C II, Si III and Fe III lines, confirming the diversity of variability in photospheric lines, as well as the double S-wave variation of circumstellar hydrogen. Using the multiline analysis method of Least-Squares Deconvolution (LSD), new, more precise longitudinal magnetic field measurements reveal a substantial variance between the shapes of the observed and RRM model time-varying field. The phase resolved Stokes V profiles of He I 5876 A and 6678 A lines are fit poorly by synthetic profiles computed from the magnetic topology assumed by Townsend et al. (2005). These results challenge the offset dipole field configuration assumed in the application of the RRM model to sigma Ori E, and indicate that future models of its magnetic field should also include complex, higher-order components.Comment: 13 pages, 8 figures. Accepted for publication in MNRA

    Survey of Canada Goose Feces for Presence of \u3cem\u3eGiardia\u3c/em\u3e

    Get PDF
    As resident Canada goose (Branta canadensis) populations increase throughout North America, so do the health and environmental risks associated with goose feces. Previous studies suggest that goose feces may be a conduit for transmitting Giardia, a protozoan that is parasitic to humans. We surveyed fecal droppings from free-ranging resident Canada geese for Giardia spp. at 9 sites in the Triangle area (Raleigh, Durham, and Chapel Hill) of North Carolina in 2007 and 2008. Samples (n = 234) were tested using the ProSpect® Giardia EZ Microplate Assay, and there were no positives. Our results indicate that risk of zoonotic giardiasis from Canada goose feces in the Triangle area of North Carolina is low

    Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging

    Get PDF
    This study investigates the temporal and spatial interchange of the aromatic amino acid phenylalanine (Phe) between human retinal pigment epithelial cell line (ARPE-19) and tachyzoites of the apicomplexan protozoan parasite Toxoplasma gondii (T. gondii). Stable isotope labelling by amino acids in cell culture (SILAC) is combined with Raman micro-spectroscopy to selectively monitor the incorporation of deuterium-labelled Phe into proteins in individual live tachyzoites. Our results show a very rapid uptake of L-Phe(D8) by the intracellular growing parasite. T. gondii tachyzoites are capable of extracting L-Phe(D8) from host cells as soon as it invades the cell. L-Phe(D8) from the host cell completely replaces the L-Phe within T. gondii tachyzoites 7–9 hours after infection. A quantitative model based on Raman spectra allowed an estimation of the exchange rate of Phe as 0.5–1.6 × 104 molecules/s. On the other hand, extracellular tachyzoites were not able to consume L-Phe(D8) after 24 hours of infection. These findings further our understanding of the amino acid trafficking between host cells and this strictly intracellular parasite. In particular, this study highlights new aspects of the metabolism of amino acid Phe operative during the interaction between T. gondii and its host cell

    Continuous production of lentiviral vectors using a fixed-bed bioreactor

    Get PDF
    Lentiviral vectors (LVs) have emerged as indispensable tools for mediating stable transfer of large transgenes in mammalian cells, which has resulted in the widespread application of LVs for the manufacture of gene-modified cell therapies, particularly chimeric antigen receptor T-cell (CAR-T-cell) therapies. The typical manufacture of LVs through chemical transfection of adherent embryonic kidney 293T-cells with plasmid DNA is highly versatile and enables manufacturing to pivot to produce vectors with alternative transgenes and envelope proteins. However, transient transfection presents several challenges, including batch-to-batch variability, limited scalability and high costs attributed to the plasmid DNA and transfection reagent. Therefore, the transition towards continuous LV production using producer cell lines would allow for cost effective and scalable manufacturing along with enhanced safety and reproducibility. Specifically, continuous production using stable producer cell lines could extend vector expression by counteracting the limited post-induction expression time and eliminating the requirement for removal of the inducing agent during downstream processing. In this study, a continuous LV manufacturing process was established using a stable producer cell line, which constitutively expresses third-generation LVs pseudotyped the RDpro envelope protein (WinPacRDpro). Production of LVs in typical 2D culture vessels was performed, however, these systems lack the control of culture parameters, such as pH and dissolved oxygen, and require laborious handling, which introduce risks of contamination. Therefore, the transition to LV production in bioreactors is a necessary step to achieve sufficient LV supply, e.g. for late-stage clinical trials. This work demonstrates the establishment of a quasi-perfusion process using repetitive batch strategy with medium exchange, first, in 2D culture vessels and then, to an iCELLis fixed-bed bioreactor to continuously produce RDpro-pseudotyped LVs. This initial work using a continuous process-mimic in a fixed-bed bioreactor enables cell expansion in a controlled environment and the bioreactor characterization was used to gain insights for the development of a perfusion strategy. Growth, substrate utilization, lactate generation and LV production were evaluated under different medium exchange strategies. Finally, the established bioreactor process was then transformed to perfusion culture with studies aimed at understanding the impact of perfusion conditions on LV production
    corecore