293 research outputs found

    Empirical Abundance Scaling Laws and Implications for the Gamma-Process in Core-Collapse Supernovae

    Full text link
    Analyzing the solar system abundances, we have found two empirical abundance scaling laws concerning the p- and s-nuclei with the same atomic number. The first scaling is s/p ratios are almost constant over a wide range of the atomic number, where the p-nculei are lighter than the s-nuclei by two or four neutrons. The second scaling is p/p ratios are almost constant, where the second pp-nuclei are lighter than the first p-nucleus by two neutrons. These scalings are a piece of evidence that most p-nuclei are dominantly synthesized by the gamma-process in supernova explosions. The scalings lead to a novel concept of "universality of gamma-process" that the s/p and p/p ratios of nuclei produced by individual gamma-processes are almost constant, respectively. We have calculated the ratios by gamma-process based on core-collapse supernova explosion models under various astrophysical conditions and found that the scalings hold for materials produced by individual gamma-processes independent of the astrophysical conditions assumed. The universality originates from three mechanisms: the shifts of the gamma-process layers to keep their peak temperature, the weak s-process in pre-supernovae, and the independence of the s/p ratios of the nuclear reactions. The results further suggest an extended universality that the s/p ratios in the gamma-process layers are not only constant but also centered on a specific value of 3. With this specific value and the first scaling, we estimate that the ratios of ss-process abundance contributions from the AGB stars to the massive stars are almost 6.7 for the ss-nuclei of A > 90. We find that large enhancements of s/p ratios for Ce, Er, and W are a piece of evidence that the weak s-process actually occurred before SNe.Comment: 35 pages, 15 figure

    Second Backbend in the Mass A ~ 180 Region

    Full text link
    Within the framework of selfconsistent cranked Hartree-Fock- Bogoliubov theory(one-dimensional) we predict second backbend in the yrast line of Os-182 at I40I \approx 40 , which is even sharper than the first one observed experimentally at I14I \approx 14 . Around such a high spin the structure becomes multi-quasiparticle type, but the main source of this strong discontinuity is a sudden large alignment of i_13/2 proton orbitals along the rotation axis followed soon by the alignment of j_15/2 neutron orbitals. This leads to drastic structural changes at such high spins. When experimentally confirmed, this will be observed for the first time in this mass region, and will be at the highest spin so far.Comment: 13 pages, 4 ps figure

    RPA calculations with Gaussian expansion method

    Full text link
    The Gaussian expansion method (GEM) is extensively applied to the calculations in the random-phase approximation (RPA). We adopt the mass-independent basis-set that has been tested in the mean-field calculations. By comparing the RPA results with those obtained by several other available methods for Ca isotopes, using a density-dependent contact interaction and the Woods-Saxon single-particle states, we confirm that energies, transition strengths and widths of their distribution are described by the GEM bases to good precision, for the 11^-, 2+2^+ and 33^- collective states. The GEM is then applied to the self-consistent RPA calculations with the finite-range Gogny D1S interaction. The spurious center-of-mass motion is well separated from the physical states in the E1E1 response, and the energy-weighted sum rules for the isoscalar transitions are fulfilled reasonably well. Properties of low-energy transitions in 60^{60}Ca are argued in some detail.Comment: 30 pages including 12 figure

    Photo-disintegration cross section measurements on 186^{186}W, 187^{187}Re and 188^{188}Os: Implications for the Re-Os cosmochronology

    Full text link
    Cross sections of the 186^{186}W, 187^{187}Re, 188^{188}Os(γ,n\gamma,n) reactions were measured using quasi-monochromatic photon beams from laser Compton scattering (LCS) with average energies from 7.3 to 10.9 MeV. The results are compared with the predictions of Hauser-Feshbach statistical calculations using four different sets of input parameters. In addition, the inverse neutron capture cross sections were evaluated by constraining the model parameters, especially the E1E1 strength function, on the basis of the experimental data. The present experiment helps to further constrain the correction factor FσF_{\sigma} for the neutron capture on the 9.75 keV state in 187^{187}Os. Implications of FσF_{\sigma} to the Re-Os cosmochronology are discussed with a focus on the uncertainty in the estimate of the age of the Galaxy.Comment: 11 page

    Superdeformation in Asymmetric N>>Z Nucleus 40^{40}Ar

    Get PDF
    A rotational band with five γ\gamma-ray transitions ranging from 2+^{+} to 12+^{+} states was identified in 40^{40}Ar. This band is linked through γ\gamma transitions from the excited 2+^{+}, 4+^{+} and 6+^{+} levels to the low-lying states; this determines the excitation energy and the spin-parity of the band. The deduced transition quadrupole moment of 1.450.31+0.49eb^{+0.49}_{-0.31} eb indicates that the band has a superdeformed shape. The nature of the band is revealed by cranked Hartree--Fock--Bogoliubov calculations and a multiparticle--multihole configuration is assigned to the band

    Experimental apparatus at KUR-ISOL to identify isomeric transitions from fission products, and decay spectroscopy of 151Ce

    Get PDF
    Decay studies on 151Ce have been performed using the on-line isotope separator connected to the Kyoto University Reactor. In addition to conventional γ and conversion electron spectroscopy, β-gated measurements were carried out on mass-separated 151Ce to identify an isomeric transition. From the analysis of the obtained data, the half-life of the isotope was ascertained to be 1.76(6) s and a decay scheme containing six excited levels was constructed for the first time. The excited level at 35.1 keV in 151Pr was found to be a long-lived state (a half-life of approximately 10us or longer)

    Nuclear structure of 30S and its implications for nucleosynthesis in classical novae

    Full text link
    The uncertainty in the 29P(p,gamma)30S reaction rate over the temperature range of 0.1 - 1.3 GK was previously determined to span ~4 orders of magnitude due to the uncertain location of two previously unobserved 3+ and 2+ resonances in the 4.7 - 4.8 MeV excitation region in 30S. Therefore, the abundances of silicon isotopes synthesized in novae, which are relevant for the identification of presolar grains of putative nova origin, were uncertain by a factor of 3. To investigate the level structure of 30S above the proton threshold (4394.9(7) keV), a charged-particle spectroscopy and an in-beam gamma-ray spectroscopy experiments were performed. Differential cross sections of the 32S(p,t)30S reaction were measured at 34.5 MeV. Distorted wave Born approximation calculations were performed to constrain the spin-parity assignments of the observed levels. An energy level scheme was deduced from gamma-gamma coincidence measurements using the 28Si(3He,n-gamma)30S reaction. Spin-parity assignments based on measurements of gamma-ray angular distributions and gamma-gamma directional correlation from oriented nuclei were made for most of the observed levels of 30S. As a result, the resonance energies corresponding to the excited states in 4.5 MeV - 6 MeV region, including the two astrophysically important states predicted previously, are measured with significantly better precision than before. The uncertainty in the rate of the 29P(p,gamma)30S reaction is substantially reduced over the temperature range of interest. Finally, the influence of this rate on the abundance ratios of silicon isotopes synthesized in novae are obtained via 1D hydrodynamic nova simulations.Comment: 22 pages, 12 figure

    Discovery of Yttrium, Zirconium, Niobium, Technetium, and Ruthenium Isotopes

    Full text link
    Currently, thirty-four yttrium, thirty-five zirconium, thirty-four niobium, thirty-five technetium, and thirty-eight ruthenium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.Comment: To be published in Atomic Data and Nuclear Data Table

    Collective and broken pair states of 65,67Ga

    Get PDF
    Excited states of 65Ga and 67Ga nuclei were populated through the 12C(58Ni,αp) and 12C(58Ni,3p) reactions, respectively, and investigated by in-beam γ-ray spectroscopic methods. The NORDBALL array equipped with a charged particle ball and 11 neutron detectors was used to detect the evaporated particles and γ rays. The level schemes of 65,67Ga were constructed on the basis of γγ-coincidence relations up to 8.6 and 10 MeV excitation energy, and Iπ=27/2 and 33/2+ spin and parity, respectively. The structure of 65,67Ga nuclei was described in the interacting boson-fermion plus broken pair model, including quasiproton, quasiproton-two-quasineutron, and three-quasiproton fermion configurations in the boson-fermion basis states. Most of the states were assigned to quasiparticle + phonon and three quasiparticle configurations on the basis of their electromagnetic decay properties
    corecore