Analyzing the solar system abundances, we have found two empirical abundance
scaling laws concerning the p- and s-nuclei with the same atomic number. The
first scaling is s/p ratios are almost constant over a wide range of the atomic
number, where the p-nculei are lighter than the s-nuclei by two or four
neutrons. The second scaling is p/p ratios are almost constant, where the
second p-nuclei are lighter than the first p-nucleus by two neutrons. These
scalings are a piece of evidence that most p-nuclei are dominantly synthesized
by the gamma-process in supernova explosions. The scalings lead to a novel
concept of "universality of gamma-process" that the s/p and p/p ratios of
nuclei produced by individual gamma-processes are almost constant,
respectively. We have calculated the ratios by gamma-process based on
core-collapse supernova explosion models under various astrophysical conditions
and found that the scalings hold for materials produced by individual
gamma-processes independent of the astrophysical conditions assumed. The
universality originates from three mechanisms: the shifts of the gamma-process
layers to keep their peak temperature, the weak s-process in pre-supernovae,
and the independence of the s/p ratios of the nuclear reactions. The results
further suggest an extended universality that the s/p ratios in the
gamma-process layers are not only constant but also centered on a specific
value of 3. With this specific value and the first scaling, we estimate that
the ratios of s-process abundance contributions from the AGB stars to the
massive stars are almost 6.7 for the s-nuclei of A > 90. We find that large
enhancements of s/p ratios for Ce, Er, and W are a piece of evidence that the
weak s-process actually occurred before SNe.Comment: 35 pages, 15 figure