309 research outputs found

    The Effect of LXR Activators on AP-1 Proteins in Keratinocytes

    Get PDF
    Oxysterols, via activation of liver X receptor (LXR), regulate keratinocyte differentiation by stimulating transglutaminase cross-linking of several constituent proteins leading to the formation of the cornified envelope. We previously reported that oxysterols increase the expression of one of these cross-linked proteins, involucrin, and that this effect can be abolished by mutations of the distal activator protein (AP)-1 response element in the involucrin promoter. Furthermore, oxysterols increase AP-1 binding in an electrophoretic gel mobility shift assay and increase the expression of an AP-1 reporter. In this study, we describe the individual components of the AP-1 complex that are involved in the oxysterol-mediated AP-1 activation and stimulation of keratinocyte differentiation. We identified Fra-1 within the AP-1 DNA binding complex by supershift analysis of nuclear extracts from oxysterol-treated, cultured keratinocytes and confirmed that oxysterol treatment increased the levels of Fra-1 by western blot analysis. Additionally, on Western and Northern analysis, oxysterol treatment increased two other AP-1 proteins, Jun-D and c-Fos, whereas Fra-2, Jun-B, and c-Jun were not changed. Similar alterations in AP-1 proteins occurred when 25-OH-cholesterol or non-steroidal LXR agonists (GW3965, TO-901317) were used. These results indicate that oxysterols induce specific AP-1 proteins, thereby activating involucrin, one of the genes required for epidermal differentiation

    Impact of Age and Body Site on Adult Female Skin Surface pH

    Get PDF
    Background: pH is known as an important parameter in epidermal barrier function and homeostasis. Aim: The impact of age and body site on skin surface pH (pH(SS)) of women was evaluated in vivo. Methods: Time domain dual lifetime referencing with luminescent sensor foils was used for pH(SS) measurements. pH(SS) was measured on the forehead, the temple, and the volar forearm of adult females (n = 97, 52.87 +/- 18.58 years, 20-97 years). Every single measurement contained 2,500 pH values due to the luminescence imaging technique used. Results: pH(SS) slightly increases with age on all three investigated body sites. There are no significant differences in pH(SS) between the three investigated body sites. Conclusion: Adult pH(SS) on the forehead, the temple and the volar forearm increases slightly with age. This knowledge is crucial for adapting medical skin care products. Copyright (C) 2012 S. Karger AG, Base

    Cystatin M/E Variant Causes Autosomal Dominant Keratosis Follicularis Spinulosa Decalvans by Dysregulating Cathepsins L and V

    Get PDF
    Keratosis follicularis spinulosa decalvans (KFSD) is a rare cornification disorder with an X-linked recessive inheritance in most cases. Pathogenic variants causing X-linked KFSD have been described in MBTPS2, the gene for a membrane-bound zinc metalloprotease that is involved in the cleavage of sterol regulatory element binding proteins important for the control of transcription. Few families have been identified with an autosomal dominant inheritance of KFSD. We present two members of an Austrian family with a phenotype of KFSD, a mother and her son. The disease was not observed in her parents, pointing to a dominant inheritance with a de novo mutation in the index patient. Using whole-exome sequencing, we identified a heterozygous missense variant in CST6 in DNA samples from the index patient and her affected son. In line with family history, the variant was not present in samples from her parents. CST6 codes for cystatin M/E, a cysteine protease inhibitor. Patient keratinocytes showed increased expression of cathepsin genes CTSL and CTSV and reduced expression of transglutaminase genes TGM1 and TGM3. A relative gain of active, cleaved transglutaminases was found in patient keratinocytes compared to control cells. The variant found in CST6 is expected to affect protein targeting and results in marked disruption of the balance between cystatin M/E activity and its target proteases and eventually transglutaminases 1 and 3. This disturbance leads to an impairment of terminal epidermal differentiation and proper hair shaft formation seen in KFSD

    Skin Barrier Development Depends on CGI-58 Protein Expression during Late-Stage Keratinocyte Differentiation

    Get PDF
    Adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) are limiting in cellular triglyceride catabolism. Although ATGL deficiency is compatible with normal skin development, mice globally lacking CGI-58 die postnatally and exhibit a severe epidermal permeability barrier defect, which may originate from epidermal and/or peripheral changes in lipid and energy metabolism. Here, we show that epidermis-specific disruption of CGI-58 is sufficient to provoke a defect in the formation of a functional corneocyte lipid envelope linked to impaired ω-O-acylceramide synthesis. As a result, epidermis-specific CGI-58-deficient mice show severe skin dysfunction, arguing for a tissue autonomous cause of disease development. Defective skin permeability barrier formation in global CGI-58-deficient mice could be reversed via transgenic restoration of CGI-58 expression in differentiated but not basal keratinocytes suggesting that CGI-58 is essential for lipid metabolism in suprabasal epidermal layers. The compatibility of ATGL deficiency with normal epidermal function indicated that CGI-58 may stimulate an epidermal triglyceride lipase beyond ATGL required for the adequate provision of fatty acids as a substrate for ω-O-acylceramide synthesis. Pharmacological inhibition of ATGL enzyme activity similarly reduced triglyceride-hydrolytic activities in wild-type and CGI-58 overexpressing epidermis implicating that CGI-58 participates in ω-O-acylceramide biogenesis independent of its role as a coactivator of epidermal triglyceride catabolism

    Enhanced expression of genes related to xenobiotic metabolism in the skin of patients with atopic dermatitis but not with ichthyosis vulgaris

    Get PDF
    Previous transcriptome analyses underscored the importance of immunological and skin barrier abnormalities in atopic dermatitis (AD). We sought to identify pathogenic pathways involved in AD by comparing the transcriptomes of AD patients stratified for filaggrin (FLG)-null mutations to those of both healthy donors and patients with ichthyosis vulgaris. We applied RNA sequencing to analyze the whole transcriptome of nonlesional skin. We found that 607 genes (476 up-regulated and 131 down-regulated by >2-fold) and 193 genes (172 up-regulated and 21 down-regulated by >2-fold) were differentially expressed when all AD or ichthyosis vulgaris patients were compared with healthy donors, respectively. Expression of genes involved in RNA/protein turnover and adenosine triphosphate synthesis, as well as genes involved in cell death, response to oxidative stress, DNA damage/repair, and autophagy, were significantly enriched in AD skin and, to a lesser extent, in ichthyosis vulgaris skin. FLG-null mutations appear to hardly interfere with current observations. Genes related to xenobiotic metabolism were up-regulated in AD skin only, as were genes related to arachidonic, linoleic, and α-linolenic acid metabolism. Thus, this work newly links AD pathogenesis to aberrant expression of genes related to xenobiotic metabolism

    A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity.

    Get PDF
    Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI(-/-) and KtyII(-/-)(K8) mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation

    CD1a expression by Barrett's metaplasia of gastric type may help to predict its evolution towards cancer

    Get PDF
    As emerging in the recent literature, CD1a has been regarded as a molecule whose expression may reflect tumour evolution. The aim of the present work was to investigate the expression of CD1a in a series of Barrett's metaplasia (BM), gastric type (GTBM), with and without follow-up, in order to analyse whether its expression may help to diagnose this disease and to address the outcome. Indeed, GTBM may be confused sometimes with islets of ectopic gastric mucosa and its evolution towards dysplasia (Dy) or carcinoma (Ca) could not be foreseen. We showed a significant higher expression of CD1a in GTBM than in both Dy and Ca; nevertheless, the number of positive GTBM was significantly lower in the group of cases that at follow-up underwent Dy or Ca. Our data address that CD1a may be a novel biomarker for BM and that its expression may help to predict the prognosis of this pathology

    Production of Superoxide Anions by Keratinocytes Initiates P. acnes-Induced Inflammation of the Skin

    Get PDF
    Acne vulgaris is a chronic inflammatory disorder of the sebaceous follicles. Propionibacterium acnes (P. acnes), a gram-positive anareobic bacterium, plays a critical role in the development of these inflammatory lesions. This study aimed at determining whether reactive oxygen species (ROS) are produced by keratinocytes upon P. acnes infection, dissecting the mechanism of this production, and investigating how this phenomenon integrates in the general inflammatory response induced by P. acnes. In our hands, ROS, and especially superoxide anions (O2•−), were rapidly produced by keratinocytes upon stimulation by P. acnes surface proteins. In P. acnes-stimulated keratinocytes, O2•− was produced by NAD(P)H oxidase through activation of the scavenger receptor CD36. O2•− was dismuted by superoxide dismutase to form hydrogen peroxide which was further detoxified into water by the GSH/GPx system. In addition, P. acnes-induced O2•− abrogated P. acnes growth and was involved in keratinocyte lysis through the combination of O2•− with nitric oxide to form peroxynitrites. Finally, retinoic acid derivates, the most efficient anti-acneic drugs, prevent O2•− production, IL-8 release and keratinocyte apoptosis, suggesting the relevance of this pathway in humans
    • …
    corecore