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The Effect of LXR Activators on AP-1 Proteins in Keratinocytes
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Oxysterols, via activation of liver X receptor (LXR), regulate keratinocyte differentiation by stimulating
transglutaminase cross-linking of several constituent proteins leading to the formation of the cornified envelope.
We previously reported that oxysterols increase the expression of one of these cross-linked proteins, involucrin,
and that this effect can be abolished by mutations of the distal activator protein (AP)-1 response element in the
involucrin promoter. Furthermore, oxysterols increase AP-1 binding in an electrophoretic gel mobility shift assay
and increase the expression of an AP-1 reporter. In this study, we describe the individual components of the AP-1
complex that are involved in the oxysterol-mediated AP-1 activation and stimulation of keratinocyte differentiation.
We identified Fra-1 within the AP-1 DNA binding complex by supershift analysis of nuclear extracts from oxysterol-
treated, cultured keratinocytes and confirmed that oxysterol treatment increased the levels of Fra-1 by western blot
analysis. Additionally, on Western and Northern analysis, oxysterol treatment increased two other AP-1 proteins,
Jun-D and c-Fos, whereas Fra-2, Jun-B, and c-Jun were not changed. Similar alterations in AP-1 proteins occurred
when 25-OH-cholesterol or non-steroidal LXR agonists (GW3965, TO-901317) were used. These results indicate that
oxysterols induce specific AP-1 proteins, thereby activating involucrin, one of the genes required for epidermal

differentiation.
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The epidermis is a self-renewing epithelium that undergoes
a highly regulated differentiation program culminating in the
formation of corneocytes in the outermost layers of the
epidermis (Yuspa et al, 1989; Fuchs, 1990; Younus and
Gilchrest, 1992; Jackson et al, 1993; Eckert et al, 1997).
Along with the lipid-enriched extracellular matrix, these rigid
cells form a remarkably durable shield, the stratum corneum
(SC), which provides an important protective function to
the skin. The SC consists of a protein component, the
corneocyte (Kalinin et al, 2002), which provides both
resistance to external physical forces and a platform for
the extracellular matrix, which consists of multi-layers of
lipids that mediate several key SC functions, particularly
the cutaneous permeability barrier (Jackson et al, 1993).
The regulation of the underlying differentiation program that
leads to this two-compartment structure is incompletely
understood. Increased extracellular calcium, subsequently
resulting in elevated intracellular calcium, is the most widely
recognized signal for the induction of normal keratinocyte
differentiation, both in vitro and in vivo (Gibbons et al, 1996;
Bikle et al, 2001; Elias et al, 2002). Among other activities,
calcium stimulates the protein kinase C (PKC) pathway,

Abbreviations: AP, activator protein; LXR, liver X receptor; SC,
stratum corneum

which is known to influence gene expression through the
activator protein (AP)-1 (Dlugosz et al, 1994; Denning et al,
1995; Ruthberg et al, 1996). Phorbol esters, such as phorbol
12-myristate 13-acetate (PMA) also stimulate PKC activity,
activating AP-1 proteins a sequence that ultimately leads to
increased cornification (Welter et al, 1995). AP-1 complexes
that activate AP-1 response elements comprise members of
the Jun and Fos families (Wisdom, 1999; Angel et al, 2001).
The Fos family includes c-Fos, FosB, Fra-1, and Fra-2,
whereas the Jun family includes c-Jun, Jun-B, and JunD.
The AP-1 complex is typically comprised of heterodimers
between a Fos and a Jun family member, which recognize
a 5'-TGAGTCA-3’' consensus sequence in the enhancer
region of a variety of genes, including genes that are
important for keratinocyte differentiation. Many of the
differentiation-related corneocyte proteins, the majority of
which are encoded at the epidermal differentiation complex
(EDC) on chromosome 1921 (Volz et al, 1993), are regulated
by AP-1 response elements in their promoters (Crish et al,
1998, 2002).

The ability of AP-1 complexes to interact with an AP-1
response element and to stimulate transcription is con-
trolled by a number of factors, but the primary regulation is
at the level of transcription of the genes encoding the AP-1
proteins (Karin, 1995; Wisdom, 1999; Angel et al, 2001).
Thus, an increase in the levels of AP-1 protein heterodimers
generally increases the transcription of AP-1-regulated
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genes. Likewise, increases in AP-1 activity may coordi-
nately increase the expression of many of the proteins
required for keratinocyte differentiation. Not only calcium,
but also several other known stimulators of keratinocyte
differentiation activate AP-1. We have recently shown that
topical treatment of mice with oxysterols, activators of liver
X receptor (LXR), such as 22(R)-OH-cholesterol, stimulates
epidermal differentiation. This stimulation of differentiation
is specifically mediated by the nuclear hormone receptor,
LXR, since it does not occur in mice deficient in LXR-
(Komuves et al, 2002). LXR like other members of the class
Il nuclear hormone receptor family heterodimerizes with
RXR, and binds to DR-4 response elements. Two different
genes (o and B) are known to encode LXR proteins, and
both are activated by oxysterols (Janowski et al, 1996;
Lehrmann et al, 1997). LXR-o and LXR-3 are expressed in
cultured normal human keratinocytes and in fetal rat skin,
but only LXR-f is present in northern blots of normal adult
mouse epidermis (Komuves et al, 2002). In cultured human
keratinocytes, oxysterols increase cornified envelope for-
mation and the expression of both transglutaminase-1 and
involucrin (Hanley et al, 2000). The increased expres-
sion of involucrin can be abolished by either deletion or
site-specific mutation of the distal AP-1 response element
(—2117 to —2111 bp) within the involucrin promoter region.
Moreover, oxysterols increase AP-1 binding in an electro-
phoretic gel mobility shift assay and increase the expression
of an AP-1 reporter construct coupled to luciferase,
indicating that LXR activators induce a general increase in
expression of AP-1-regulated genes in keratinocytes (Han-
ley et al, 2000a, b). Taken together, these findings suggest
that oxysterols activate LXR, thereby increasing the activity
of AP-1, which stimulates the expression of involucrin, and
perhaps other AP-1-regulated proteins that are crucial
for keratinocyte differentiation (Hanley et al, 2000). These
studies leave unanswered, however, which AP-1 proteins
are specifically regulated by LXR activation. In this study,
we identified the individual AP-1 proteins that are increased
by oxysterol treatment using supershift analysis of proteins
in the AP-1 complex. Furthermore, we not only identified
which individual members of the AP-1 transcription com-
plex are regulated on the protein level, but also whether
regulation occurs at the RNA level using a number of
different LXR agonists. Together, our results indicate that
the increase in AP-1 activity induced by oxysterols in
keratinocytes results from increased expression of Fra-1,
Jun-D, and c-Fos.

Results

Fra-1 is the predominant protein in the AP-1 complex of
oxysterol-treated keratinocytes A variety of differentia-
tion-promoting agents, such as calcium, phorbol esters,
cholesterol sulfate, and oxysterols induce AP-1 DNA
binding activity (Eckert and Green, 1986; Fuchs, 1990;
Welter et al, 1995; Hanley et al, 2000; Hanley et al, 2001).
We previously showed increased binding of nuclear proteins
to AP-1 DNA by electrophoretic gel mobility shift analysis
(Hanley et al, 2000); i.e., addition of nuclear extracts from
oxysterol-treated keratinocytes to AP-1 oligonucleotides
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resulted in a band shift, and the intensity of the band
increased in extracts from human cultured keratinocytes
treated with oxysterols (Hanley et al, 2000). In this study, we
employed supershift analysis to determine which AP-1
protein members are present in the oxysterol-induced AP-1
complex. In nuclear extracts from control keratinocytes
(Fig 1, upper panel), Fra-1 was the predominant super-
shifted band, but Fra-2 and Jun-D were also observed.
In cultured keratinocytes, treated with 10 M 22(R)OH-
cholesterol for 24 h, we observed a supershifted band in
nuclear extracts from cells incubated with an antibody to
Fra-1, which demonstrates that Fra-1 is a predominant
protein in the AP-1 complex of these cells (Fig 1). In con-
trast, no distinct bands were observed when antibodies
against Fra-2, Fos-B, c-Fos, Jun-D, c-Jun (cJ), and Jun-B
(JB) were pre-incubated with the nuclear extract. These
data indicate that the AP-1 complex that is increased
in oxysterol-treated keratinocytes contains predominantly
Fra-1.

Oxysterols increase Fra-1, Jun-D, and c-Fos protein
levels in keratinocytes Although the supershift experiment

Control

supershifted
complex — >

AP-1

F2 fB ¢f JD ¢J JB

Oxysterol =
Treated

supershifted
complex

APl —

Figure 1

Activator protein (AP)-1-DNA complex composition in oxysterol-
treated keratinocytes. Cultured keratinocytes were treated with
vehicle (upper panel) or 10 uM 22(R)OH-cholesterol (lower panel) for
24 h and nuclear extracts were isolated as described in Methods. The
extracts were pre-incubated for 2 h at 4°C in the presence of 20 pg of
antibody and then incubated in the presence of 3P-labeled AP-1
oligonucleotides as described in Methods. The incubations were
electrophoresed on non-denaturing gels, dried, and autoradiographed.
The autoradiographs shown are representative of results obtained
in three separate experiments. F1, Fra-1; F2, Fra-2; fB, Fos-B; cf,
c-Fos; JD, Jun-D; cd, c-Jun; and JB, Jun-B; - - -, negative control (no
antibody).
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clearly shows Fra-1 content, other AP-1 factors may not be
detected by this technique. Therefore, we compared the
individual components of the AP-1 complex from oxysterol-
versus vehicle-treated keratinocytes using western blot
analysis. Total cellular protein was isolated from keratino-
cytes 24 h after treatment with either 22(R)OH-cholesterol
(10 uM) or vehicle. Western blot analyses showed that
oxysterols increased Fra-1 protein levels (Fig 2). In addition,
we observed an increase in JunD protein levels, as well as a
moderate increase in c-Fos (Fig 2), both of which were not
detectable in the supershift assays. In contrast, the protein
levels of Fra-2, c-Jun and Jun-B did not change with
oxysterol treatment. Together, these results show that
treatment of cultured keratinocytes with the LXR activator,
22(R)OH-cholesterol, increases the protein levels of Fra-1,
Jun-D, and c-Fos.

Oxysterols increase mRNA levels of Fra-1, Jun-D, and
c-Fos in keratinocytes We next determined whether
oxysterol-induced alterations in the AP-1 complex are
due to increased RNA levels by northern blot analysis.
Treatment of human-cultured keratinocytes with 22(R)OH-
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Protein levels of Fra-1, Jun-B, and Jun-D are
increased by oxysterols. Keratinocytes were grown
in 0.03 mM calcium and incubated in the presence of
0.05% ethanol vehicle (veh) or 10 uM 22(R)OH-
cholesterol for 24 h. Western analysis was performed
as described in Methods. (A) Representative blots from
at least three independent experiments are shown. The
arrows point to bands of the appropriate molecular
weight size. (B) Quantitation of western results.
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cholesterol (10uM) for 24 h increased mRNA levels of Fra-1,
c-Fos, and Jun-D (p<0.05, Fig 3), whereas, in contrast,
oxysterol treatment did not affect mRNA levels of Fra-2,
Jun-B, and c-Jun. These results show that the oxysterol-
induced increase in Fra-1, c-Fos, and Jun-D proteins can
be attributed to increased mRNA levels for these factors. To
assess further, whether these changes in AP-1 proteins can
be attributed to activation of LXR, we next assessed
changes in AP-1 factor mRNA levels after treatment
with a number of alternative LXR agonists. We observed
a comparable induction of Fra-1, when Kkeratinocytes
were treated not only with another naturally occurring
oxysterol, 25-OH-cholesterol (p<0.01), but also with two
additional, non-sterol activators of LXR (i.e., GW3965 and
TO-901317) (p<0.05, Fig 4). Moreover, as with the
oxysterols, 22(R)OH-cholesterol, the non-steroidal LXR
activator, TO-901317, also induced Jun-D and c-Fos mRNA
expression (p<0.01, Fig 5). Together, these results show
that LXR activation increases Fra-1, Jun-D, and c-Fos
in cultured keratinocytes, but only Fra-1 increased in
the complex binding the AP-1 site contained by the
oligonucleotide.
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mRNA levels of Fra-1 and Jun-D are increased by oxysterols. Keratinocytes were grown in 0.03 mM calcium and incubated in the presence of
0.05% ethanol vehicle (veh) or 10 uM 22(R)OH-cholesterol for 24 h. Total RNA (Fra-1, Fra-2, c-Fos, Jun-D) or Poly(A) + mRNA (Jun-B, c-Jun) was
isolated and northern analysis was performed as described in Methods. Representative blots are shown. Graphs are representative of two to three
independent experiments and show the results of densitometric analysis of specific bands for the respective genes expressed as relative expression

compared to housekeeping genes. Data are presented as mean + SEM (n=3-4).

Discussion

A large number of different genes essential for keratinocyte
differentiation are regulated by AP-1 response elements.
The expression of the major proteins that comprise the
cornified envelope, including loricrin, involucrin, and small
proline-rich proteins (SPRR), as well as the enzyme primarily
responsible for protein cross-linking of the cornified
envelope, transglutaminase-1, are all stimulated by activa-
tion of AP-1 (Yamada et al, 1994; Disepio et al, 1995; Eckert
et al, 1997; Lohman et al, 1997; Banks et al, 1998; Sark et al,
1998; Disepio et al, 1999; Fischer et al, 1999; Jessen et al,
2000; Johansen et al, 2000; Ng et al, 2000; Phillips et al,
2000). In addition, the expression of differentiation-linked,
cytosolic proteins, such as profilaggrin and certain keratins,
e.g., K1, K5, and K6, are also stimulated by AP-1 activation
(Rothnagel et al, 1993; Casatorres et al, 1994; Lu et al, 1994;
Navarro et al, 1995; Jang et al, 1996; Ma et al, 1997). Since
many treatments, including increased calcium, phorbol
esters, and cholesterol sulfate, that are known to induce
keratinocyte differentiation, also stimulate AP-1 activity, the
AP-1 mechanism appears central to the whole scenario
of epidermal differentiation. Yet, while all Fos and Jun

*p<0.05.

members of the AP-family are expressed in keratinocytes,
the various stimuli of differentiation activate divergent
spectra of AP-1 proteins (Rossi ef al, 1998; Angel et al,
2001; Yates and Rayner, 2002). For example, high extra-
cellular calcium, which is well known to promote keratino-
cyte differentiation, increases c-Fos and actually decreases
Fra-1 (Ng et al, 2000). In contrast, cholesterol sulfate
stimulates DNA binding of AP-1-complexes that express
increased Fra-1, Fra-2, and Jun-D (Hanley et al, 2001).
Previous studies have shown that oxysterols, by acti-
vating LXR, also stimulate keratinocyte differentiation.
Specifically, in cultured human keratinocytes, oxysterols
increase the expression of involucrin, and this increase
requires an intact distal AP-1 response element (—2117 to
—2111 bp) (Hanley et al, 2000). Additionally, these experi-
ments also showed that treatment of keratinocytes with
oxysterols increased the binding of nuclear extracts to an
AP-1 response element (increased gel shifting) and in-
creased the transactivation of an AP-1 response elements
linked to luciferase (increased AP-1 reporter expression). In
this study, we confirm that oxysterols increase the binding
of nuclear extracts to that same AP-1 response element,
and demonstrate further, using a supershift assay, that the
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Non-sterol liver X receptor agonists induce Fra-1 mRNA expression. Keratinocytes were grown in 0.03 mM calcium and incubated in 5 pM 25-
OH-cholesterol, 10 uM TO-901317 for 24 h. Total RNA was isolated and northern analysis was performed as described in Methods. Representative
blots are shown. Graphs show the results of densitometric analysis of specific bands for Fra-1 expressed as relative expression compared to

housekeeping genes. Data are presented as mean + SEM (n=3-4).

AP-1 complex contains predominately Fra-1. Moreover,
using Western and Northern blot analysis, we show that the
protein and mRNA levels of Fra-1 increase in keratinocytes
treated with either oxysterol or non-sterol activators of LXR.
In addition, we further demonstrate that the protein and
mRNA levels of Jun-D and c-Fos increase in keratinocytes
treated with LXR activators. These studies indicate that LXR
activators increase the levels of specific AP-1 proteins that
can then activate gene transcription by binding to AP-1
response elements in the promoters of various genes.
Whereas supershifting detects Fra-1 predominantly, using
Western and Northern blotting we demonstrate that an
increase in Jun-D and c-Fos also appears to play a role.
These differences between the supershift experiments and
Western blotting are most likely due to differences in assay
sensitivity (gel shift vs Western blot). It is well recognized
that supershifting analysis is not as sensitive as Western
blotting for determining the levels of a specific protein in
cells. Together, the results show that different spectra of AP-1
proteins are stimulated in response to various inducers of
differentiation, suggesting that a variety of mechanistic
pathways can activate AP-1 in keratinocytes.

In the epidermis, a multi-step process of keratinocyte
differentiation ultimately results in the formation of the
outermost sheath of the skin, the SC, which consists of
protein-enriched corneocytes embedded in a continuous,
lipid-enriched, extracellular matrix (Jackson et al, 1993). The
combination of corneocytes (the bricks) and extracellular
lipid membranes (the mortar) provides a barrier between the
organism and the environment that is required for survival
(Jackson et al, 1993). Corneocytes are formed when
keratinocytes lose their nucleus above the stratum granu-
losum, and deposit a 10-nm thick, insoluble, external
protein envelope that replaces the plasma membrane,
termed the cornified envelope (CE) (Kalinin et al, 2002).
This structure provides both rigidity and strength to the skin,
while providing a scaffold for the supramolecular organiza-
tion of the extracellular lipid matrix. The lipids in the
extracellular spaces of the SC derive from the secretion of
the lamellar body (LB) contents from stratum granulosum

*p<0.05.

cells. Both the hydrophobicity of these lipids and their
organization into membrane bilayers account for the barrier
to water movement (Jackson et al, 1993). The formation of
LB requires lipids, including cholesterol, which derive mainly
from local epidermal lipid synthesis, but some lipids, e.g.,
essential fatty acids, derive from extracutaneous sites
(Feingold, 1991). Whereas the protein versus lipid arms of
keratinocyte differentiation that lead to SC formation are
traditionally viewed as concurrent, but independent pro-
cesses, the ability of oxysterol metabolites of cholesterol to
activate LXR, and to stimulate the expression of proteins
that comprise the cornified envelope, suggests a mechan-
ism for cross-talk between the two arms of keratinocyte
differentiation (Fig 6). Similarly, the ability of cholesterol
sulfate, another compound synthesized from cholesterol, to
stimulate keratinocyte differentiation provides further sup-
port for the coordination of the protein and lipid arms of
keratinocyte differentiation. One can speculate that as
cholesterol levels increase in stratum spinosum/granulosum
cells for lamellar body formation, would also result in
increased generation of its metabolic products, including
oxysterols and cholesterol sulfate. In fact, cholesterol
sulfate levels are known to peak in the granular layer (Elias
et al, 1984). Thus, these molecules are in a position to
regulate keratinocyte differentiation by the coordinated
formation of the dual-compartment SC.

In summary, these results suggest that activation of LXR
by oxysterols stimulates keratinocyte differentiation by
inducing specific AP-1 transcription factors, which in turn
activate the genes required for the differentiation process
(Fig 6). Oxysterols may be important signal molecules in the
epidermis that can coordinately regulate keratinocyte
differentiation by increasing AP-1 activity.

Materials and Methods

Reagents The natural LXR activators, 22(R)OH-cholesterol and 25-
OH-cholesterol, were purchased from Sigma Chem. Co. (St Louis,
Missouri).  N-(2,2,2-trifluoro-ethyl)-N-[4-(2,2,2-trifluoro-1-hydroxy-
1-trifluoromethyl-ethyl)-phenyl]-benzenesulfonamide (TO-901317)



46 SCHMUTH ET AL

@ A O D
A i i 1

c-Fos: relative RNA levels
(fold increase)

- N
|

e

TO-901317

control

o
]
*

F-9
1

(%
1

ha
L

—
il

JunD: relative RNA levels
(fold increase)

Hl

control

=]
|

TO-901317

| Control | TO-901317 |

-“‘...Jnnn

AARaaN -
Figure5

Non-sterol liver X receptor agonist induces c-Fos and JunD mRNA
expression. Keratinocytes were grown in 0.03 mM calcium and
incubated in 10 M TO-901317 for 24 h. Total RNA was isolated and
northern analysis was performed as described in Methods. Represen-
tative blots are shown. Graphs show the results of densitometric
analysis of specific bands for the respective genes expressed as
relative expression compared to GAPDH. Data are presented as
mean + SEM (n =3-4). *p<0.05.

is a synthetic, non-steroidal LXR activator and was purchased from
Cayman Chemical (Ann Arbor, Michigan). GW3965 was synthe-
sized at GlaxoSmithKline (Research Triangle Park, North Carolina)
and diluted in an ethanol vehicle for in vitro (Collins et al, 2002)
experiments. [32P] dCTP (3000 Ci per mmol, 10 mCi per mL) was
purchased from NEN Research Products (Boston, Massachusetts).
Minispin columns (G50) were purchased from Worthington Bio-
chemical (Freehold, New Jersey). cDNA for rat cyclophilin was
kindly provided by Dr G. Strewler (Harvard Medical School,
Massachusetts). Fuji RX (Fuji, Vahalla, NY) film was used for
autoradiography.

Cell culture Human epidermis was isolated from newborn fore-
skins, and keratinocytes were plated in serum-free keratinocyte
growth medium (KGM; Clonetics, San Diego, California), as
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Proposed flow chart for the effects of sterol metabolites on
keratinocyte differentiation. Activation of liver X receptor (LXR) by
increased oxysterols and cholesterol sulfate stimulate keratinocyte
differentiation by inducing specific activator protein (AP)-1 transcription
factors, which in turn activate the genes required for the differentiation
process.

described previously (Hanley et al, 2001). Second passage cells
were seeded and maintained in 0.07 mM Ca* * KGM. When the
cells were approximately 60% confluent, the medium was changed
in the presence/absence of specific treatment and cells were
cultured for 24 h.

Electrophoretic gel mobility shift assays Nuclear proteins were
prepared using the method described previously (Hanley et al,
2001). The AP-1 oligonucleotides used were 5-TCGA-TATGCCG-
TGAGTCA-GAGGGC-3' and 5'-TCGA-GCCCTC-TGACTCA-CGG-
CATA-3'; (AP-1 sites are underlined). Double-stranded oligonucleo-
tides were end labeled using 50 uCi of 32P-ATP (3000 Ci per mmol)
in the presence of T4 polynucleotide kinase (Amersham Life Sci.,
lllinois) for 60 min at 37°C and were purified using G-50 micro-
columns (Amersham). Binding reactions were performed for 30 min
at 4°C using 5 pg nuclear extracts, buffer (10 mM Tris, pH 7.5,
1 mM DTT, 1 mM EDTA, 5% glycerol), 2 ug poly-(dl-dC), and 60,000
cpm of 2P-labeled oligonucleotide in a final volume of 15 pL.
Radioinert competitor DNA was added at a 100-fold molar excess.
For supershift analyses, 5 ug of nuclear extract was pre-incubated
for 2 h at 4°C with 20 ug of antibody (Fra-1, Fra-2, Fos-B, c-Fos,
Jun-D, c-Jun, or Jun-B; all from Santa Cruz Biotech, California).
The samples were electrophoresed for 1.5 h on 5% acrylamide
gels in a 0.5 x TBE buffer, dried, and autoradiographed.

Western blot analysis Levels of different proteins forming the AP-
1 complex were assessed by protein electrophoresis and western
blotting. Briefly, 25 pg of nuclear extract was fractionated in 10%
SDS-PAGE and transferred onto a PVDF membrane (Hybond P,
Amersham), which was then incubated in PBS with 5% non-fat dry
milk and 0.05% Tween 20 for 1 h at 20°C. The membrane was then
incubated for 16 h at 4°C with rabbit antibodies (1:5000, Santa
Cruz Biotech) specific for each AP-1 family member. Following
four washes in 0.05% Tween 20 in PBS for 15 min each, the
membranes were incubated with horseradish peroxidase conju-
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gated goat anti-rabbit Ig antibodies (NA934, Amersham) for 1 h at
20°C. After washing, membranes were incubated with SuperSignal
Ultra chemiluminescent substrate (Pierce, Rockford, lllinois) and
then exposed to film. Pre-stained standards (BioRad, Hercules,
California) were used to determine molecular weight.

Northern blot analysis Total RNA was isolated by using Tri-
Reagent (Sigma) following the manufacturer’s protocol. Poly-A
RNA was isolated using oligo(dT) cellulose. RNA yields were
quantified by measuring absorption at 260 nm. After fractionation
through a 1.2% agarose—formaldehyde gel, RNA integrity in the
ethidium bromide-stained gels was assessed under a fluorescent
light source and the RNA was transferred to a nylon membrane
(NytranSuPerCharge, Schleicher & Schuell, Dassel, Germany).
Membranes were pre-hybridized for 1 h at 65°C in Ultrahyb
(Ambion, Austin, Texas). Hybridization was conducted in the same
buffer in the presence of *?P-radiolabeled partial cDNA fragments
coding for AP-1 proteins, as indicated. Probes were 32P-labeled by
random priming (RediPrime, Amersham). After overnight hybridiza-
tion, the membranes were washed for 30 min in 0.2 x SSC, 0.1%
SDS at room temperature and subsequently for 60 min at 65°C.
Autoradiography was performed at —70°C. Bands of the reported
size were quantified by densitometry using QuantityOne Software
(BioRad, Hercules, California). Blots were probed with GAPDH or
cyclophilin to confirm equal loading. cDNA probes comprised
human Fra-2 (clone from the American Type Culture Collection), rat
Fra-1, human c-Jun, human Jun-B, mouse Jun-D, and rat c-Fos
(gift from Dr D. Gardner, University of California, San Francisco).

Statistics Statistical analysis was performed using a Student’s
t test.
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