217 research outputs found

    High selectivity of TiC-CDC for CO2/N2 separation

    Get PDF
    A series of carbide-derived carbons (CDC) have been prepared starting from TiC and using different chlorine treatment temperatures (500–1200 °C). Contrary to N2 adsorption measurements at −196 °C, CO2 adsorption measurements at room temperature and high pressure (up to 1 MPa) together with immersion calorimetry measurements into dichloromethane suggest that the synthesized CDC exhibit a similar porous structure, in terms of narrow pore volume, independently of the temperature of the reactive extraction treatment used (samples synthesized below 1000 °C). Apparently, these carbide-derived carbons exhibit narrow constrictions were CO2 adsorption under standard conditions (0 °C and atmospheric pressure) is kinetically restricted. The same accounts for a slightly larger molecule as N2 at a lower adsorption temperature (−196 °C), i.e. textural parameters obtained from N2 adsorption measurements on CDC must be underestimated. Furthermore, here we show experimentally that nitrogen exhibits an unusual behavior, poor affinity, on these carbide-derived carbons. CH4 with a slightly larger diameter (0.39 nm) is able to partially access the inner porous structure whereas N2, with a slightly smaller diameter (0.36 nm), does not. Consequently, these CDC can be envisaged as excellent sorbent for selective CO2 capture in flue-gas streams.This work was supported by the National Science Centre under the Grant No. DEC–2011/01/N/ST5/05595. Rafał Janus wishes to thank the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund for the financial support. The research was carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (contract No. POIG.02.01.00-12-023/08)

    Descripción de la onda de reducción polarográfica de un derivado pirimidínico

    Get PDF
    It is effecte the polarographic description of a pyrimidine derivative. There is only one step of reduction with interchange of two electrons and two protons.Se ha efectuado la descripción polarográfica de un derivado pirimidínico. Se presenta un sólo paso de reducción con intercambio de dos electrones y dos protones

    Nearly Space-Filling Fractal Networks of Carbon Nanopores

    Get PDF
    URL:http://link.aps.org/doi/10.1103/PhysRevLett.88.115502 DOI:10.1103/PhysRevLett.88.115502Small-angle x-ray scattering, nitrogen adsorption, and scanning tunneling microscopy show that a series of activated carbons host an extended fractal network of channels with dimension Dp = 2.8-3.0 (pore fractal), channel width 15-20Å (lower end of scaling), network diameter 3000-3400Å (upper end of scaling), and porosity of 0.3-0.6. We interpret the network as a stack of quasiplanar invasion percolation clusters, formed by oxidative removal of walls between closed voids of diameter of ∼10Å and held in registry by fibrils of the biological precursor, and point out unique applications.This work was supported by the Petroleum Research Fund, Grant No. 30602-AC9,5 (P. P.); the Department of Energy, Contracts No. W-7405-ENG-36 (P. P.) and No. DE-AC04-00A185000 (T. P. R.); and the Ceramic and Non-Metallic Materials Program at AFOSR (W. P. H.)

    Unusual flexibility of mesophase pitch-derived carbon materials:an approach to the synthesis of graphene

    Get PDF
    Structural flexibility in a petroleum pitch-derived carbon material has been indirectly evaluated using X-ray diffraction (XRD), immersion calorimetry and inelastic neutron scattering (INS) measurements. Exposure of the carbon material to an organic solvent (e.g., n-nonane) gives rise to a large internal rearrangement, associated with a drastic re-ordering of the graphitic microdomains. These structural changes are also associated with a high flexibility of the internal porous network, as observed by inelastic neutron scattering measurements. The internal rearrangement and the structural flexibility could be responsible for the excellent performance of this kind of activated carbons in a wide variety of adsorption processes. Last but not least, the structural characteristics of these carbon materials composed of graphitic microdomains has been used to synthesize graphene “egg-like” flakes following a simple procedure based on exfoliation with organic solvents

    A Field Procedure for the Assessment of the Centring Uncertainty of Geodetic and Surveying Instruments

    Get PDF
    The uncertainty evaluation of survey measurements is a daily and essential task in any surveying work. The result of a measurement is, in fact, only complete when accompanied by a statement of its uncertainty. Miscentring, or centring error, is one of the sources of uncertainty in every basic survey measurement which may have a great effect on horizontal angle measurement for short distances. In the literature, different terms and values are considered to refer to this source of uncertainty. Standard ISO 17123 provides different procedures for assessing the measurement uncertainty of geodetic and surveying instruments, with the aim of checking their suitability for the intending and immediate task in field conditions. ISO 17123 is aware of the importance of uncertainty in the instrument centring, but it does not propose any standardised procedure for its assessment. In this study, we propose such a procedure following a Type A evaluation (through the statistical analysis of series of observations), avoiding using values from Type B evaluations (from manufacturer’s specifications, handbooks, personal experiences, etc.) that could be unsuitable for the conditions of the task. Uncertainty can be individualised for a particular instrument (which includes the plummet type), ground mark, operator, and other factors on which the results could be dependent. The testing methodology includes a configuration of the test field, measurements, and calculation, following the structure of each part of the standard ISO 17123. An experimental application is included with two different total stations, which also includes a statistical analysis of the results.The work of J.R.-R. was funded by the Vice Chancellor of Relations with Society and Labour Insertion of the University of Jaén (Grant No. 06190505N5 IFT1). The article processing charge (APC) was funded by the Research Groups “Ingeniería Cartográfica” and “Microgeodesia Jaén” (Grant Nos. PAIDI-TEP-164 and PAIDI-RNM-282 from the Regional Government of Andalucía) which also received financial support from PAIUJA R5/1/2017 of the University of Jaén

    A cohort of patients with COVID-19 in a major teaching hospital in Europe

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMArtículo escrito en nombre del COVID@HULP Working GroupSince the confirmation of the first patient infected with SARS-CoV-2 in Spain in January 2020, the epidemic has grown rapidly, with the greatest impact on the region of Madrid. This article describes the first 2226 adult patients with COVID-19, consecutively admitted to La Paz University Hospital in Madrid. Methods: Our cohort included all patients consecutively hospitalized who had a final outcome (death or discharge) in a 1286-bed hospital of Madrid (Spain) from 25 February (first case admitted) to 19 April 2020. The data were manually entered into an electronic case report form, which was monitored prior to the analysis. Results: We consecutively included 2226 adult patients admitted to the hospital who either died (460) or were discharged (1766). The patients’ median age was 61 years, and 51.8% were women. The most common comorbidity was arterial hypertension (41.3%), and the most common symptom on admission was fever (71.2%). The median time from disease onset to hospital admission was 6 days. The overall mortality was 20.7% and was higher in men (26.6% vs. 15.1%). Seventy-five patients with a final outcome were transferred to the intensive care unit (ICU) (3.4%). Most patients admitted to the ICU were men, and the median age was 64 years. Baseline laboratory values on admission were consistent with an impaired immune-inflammatory profile. Conclusions: We provide a description of the first large cohort of hospitalized patients with COVID-19 in Europe. Advanced age, male sex, the presence of comorbidities and abnormal laboratory values were more common among the patients with fatal outcome

    Unusual flexibility of mesophase pitch-derived carbon materials:an approach to the synthesis of graphene

    Get PDF
    Structural flexibility in a petroleum pitch-derived carbon material has been indirectly evaluated using X-ray diffraction (XRD), immersion calorimetry and inelastic neutron scattering (INS) measurements. Exposure of the carbon material to an organic solvent (e.g., n-nonane) gives rise to a large internal rearrangement, associated with a drastic re-ordering of the graphitic microdomains. These structural changes are also associated with a high flexibility of the internal porous network, as observed by inelastic neutron scattering measurements. The internal rearrangement and the structural flexibility could be responsible for the excellent performance of this kind of activated carbons in a wide variety of adsorption processes. Last but not least, the structural characteristics of these carbon materials composed of graphitic microdomains has been used to synthesize graphene “egg-like” flakes following a simple procedure based on exfoliation with organic solvents

    Methane hydrate formation in confined nanospace can surpass nature

    Get PDF
    Natural methane hydrates are believed to be the largest source of hydrocarbons on Earth. These structures are formed in specific locations such as deep-sea sediments and the permafrost based on demanding conditions of high pressure and low temperature. Here we report that, by taking advantage of the confinement effects on nanopore space, synthetic methane hydrates grow under mild conditions (3.5 MPa and 2 degrees C), with faster kinetics (within minutes) than nature, fully reversibly and with a nominal stoichiometry that mimics nature. The formation of the hydrate structures in nanospace and their similarity to natural hydrates is confirmed using inelastic neutron scattering experiments and synchrotron X-ray powder diffraction. These findings may be a step towards the application of a smart synthesis of methane hydrates in energy-demanding applications (for example, transportation).We acknowledge UK Science and Technlology Facilities Council for the provision of beam time on the TOSCA spectrometer (Projects RB1410624 and RB122099) and financial support from the European Commission under the 7th Framework Programme through the 'Research Infrastructures' action of the 'Capacities' Programme (NMI3-II Grant number 283883). J.S.-A. and F.R. acknowledges the financial support from MINECO: Strategic Japanese-Spanish Cooperation Program (PLE2009-0052), Concert Project-NASEMS (PCIN-2013-057) and Generalitat Valenciana (PROMETEO/2009/002). F.R. and J.L.J. thank the financial support from MINECO (MAT2012-38567-C02-01, Consolider Ingenio 2010-Multicat CSD-2009-00050 and SEV-2012-0267). K.K. thanks Grant-in-Aid for Scientific Research (A) (2424-1038), Japan. A.B. and A.U. thank the financial support from MINECO (SEV-2013-0319). J.L.J. and I.P. thank synchrotron ALBA for beamtime availability.Casco, M.; Silvestre Albero, J.; Ramirez-Cuesta, A.; Rey Garcia, F.; Jorda Moret, JL.; Bansode, A.; Urakawa, A.... (2015). Methane hydrate formation in confined nanospace can surpass nature. Nature Communications. 6(6432):1-8. https://doi.org/10.1038/ncomms7432S1866432Sloan, E. D. Jr., & Koh, C. A. Clathrate Hydrates of Natural Gases 3rd edn CRC Press (2007).Gutt, C. et al. The structure of deuterated methane-hydrate. J. Chem. Phys. 113, 4713–4721 (2000).Holbrook, W. S., Hoskins, H., Wood, W. T., Stephen, R. A. & Lizarralde, D. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science 273, 1840–1843 (1996).Sloan, E. D. Jr., Fundamental principles and applications of natural gas hydrates. Nature 426, 353–363 (2003).Rodríguez-Reinoso, F., Almansa, C. & Molina-Sabio, M. Contribution to the evaluation of density of methane adsorbed on activated carbon. J. Phys. Chem. B 109, 20227–20231 (2005).Kockrick, E. et al. Ordered mesoporous carbide derived carbons for high pressure gas storage. Carbon 48, 1707–1717 (2010).Klein, N. et al. A mesoporous metal-organic framework. Angew. Chem. Int. Ed. 48, 9954–9957 (2009).Makal, T. A., Li, J.-R., Lu, W. & Zhou, H.-C. Methane storage in advanced porous materials. Chem. Soc. Rev. 41, 7761–7779 (2012).Peng, Y. et al. Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges. J. Am.Chem. Soc. 135, 11887–11894 (2013).Casco, M. E. et al. High-pressure methane storage in porous materials: are carbon materials in the pole position? Chem. Mater 27, 959–964 (2015).Ramos-Fernández, J. M., Martínez-Escandell, M. & Rodríguez-Reinoso, F. Production of binderless activated carbon monoliths by KOH activation of carbon mesophase materials. Carbon 46, 384–386 (2008).Marsh, H. & Rodríguez-Reinoso, F. Activated Carbon Elsevier (2006).Kubo, T. et al. Diffusion-barrier-free porous carbon monoliths as a new form of activated carbon. ChemSusChem 5, 2271–2277 (2012).Kaneko, K., Itoh, T. & Fujimori, T. Collective interactions of molecules with an interfacial solid. Chem. Lett. 41, 466–475 (2012).Nakamura, M., Ohba, T., Branton, P., Kanoh, H. & Kaneko, K. Equilibrium-time and pore-width dependent hysteresis of water adsorption isotherm on hydrophobic microporous carbons. Carbon 48, 305–308 (2010).Vysniauskas, A. & Bishnoi, P. R. A kinetic study of methane hydrate formation. Chem. Eng. Sci. 38, 1061–1072 (1983).Junhong, Q. & Tianmin, G. Kinetics of methane hydrate formation in pure water and inhibitor containing systems. Chin. J. Chem. Eng 10, 316–322 (2002).Liu, J., Zhou, Y., Sun, Y., Su, W. & Zhou, L. Methane storage in wet carbon of tailored pore sizes. Carbon 49, 3731–3736 (2011).Perrin, A., Celzard, A., Marêché, J. F. & Furdin, G. Methane storage within dry and wet activated carbons: a comparative study. Energy Fuels 17, 1283–1291 (2003).Zhou, L., Liu, L., Su, W., Sun, Y. & Zhou, Y. Progress in studies of natural gas storage with wet adsorbents. Energy Fuels 24, 3789–3795 (2010).Celzard, A. & Marêché, J. F. Optimal wetting of activated carbons for methane hydrate formation. Fuel 85, 957–966 (2006).Webb, E. B. et al. High pressure rheology of hydrate slurries formed from water-in-oil emulsions. Energy Fuels 26, 3504–3509 (2012).Urita, K. et al. Confinement in carbon nanospace-induced production of KI nanocrystals of high-pressure phase. J. Am. Chem. Soc. 133, 10344–10347 (2011).Fujimori, T. et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun. 4, 2162 (2013).Tse, J. S., Ratcliffe, C. L., Powell, B. M., Sears, V. F. & Handa, Y. P. Rotational and translational motions of trapped methane. Incoherent inelastic neutron scattering of methane hydrate. J. Phys. Chem. A 101, 4491–4495 (1997).Gutt, C. et al. Quantum rotations in natural methane-clathrates from the Pacific sea-floor. Europhys. Lett. 48, 269–275 (1999).Stern, L. A., Kirby, S. H. & Durham, W. B. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice. Science 273, 1843–1848 (1996).Gutt, C. et al. The structure of deuterated methane hydrate. J. Chem. Phys. 113, 4713–4721 (2000).Everett, S. M. et al. Kinetics of methane hydrate decomposition studies via in situ low temperature X-ray powder diffraction. J. Phys. Chem. A 117, 3593–3598 (2013).Miyawaki, J. et al. Macroscopic evidence of enhanced formation of methane nanohydrates in hydrophobic nanospaces. J. Phys. Chem. B 102, 2187–2192 (1998)
    corecore