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Abstract 

A series of carbide-derived carbons (CDC) have been prepared starting from TiC and 

using different chlorine treatment temperatures (500ºC-1200ºC). Contrary to N2 

adsorption measurements at -196ºC, CO2 adsorption measurements at room temperature 

and high pressure (up to 1 MPa) together with immersion calorimetry measurements 

into dichloromethane suggest that the synthesized CDC exhibit a similar porous 

structure, in terms of narrow pore volume, independently of the temperature of the 

reactive extraction treatment used (samples synthesized below 1000ºC). Apparently, 

these carbide-derived carbons exhibit narrow constrictions were CO2 adsorption under 

standard conditions (0ºC and atmospheric pressure) is kinetically restricted. The same 

accounts for a slightly larger molecule as N2 at a lower adsorption temperature (-

196ºC), i.e. textural parameters obtained from N2 adsorption measurements on CDC 
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must be underestimated. Furthermore, here we show experimentally that nitrogen 

exhibits an unusual behavior, poor affinity, on these carbide-derived carbons. CH4 with 

a slightly larger diameter (0.39 nm) is able to partially access the inner porous structure 

whereas N2, with a slightly smaller diameter (0.36 nm), does not. Consequently, these 

CDC can be envisaged as excellent sorbent for selective CO2 capture in flue-gas 

streams.  
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1. Introduction 

CO2 capture by gas adsorption using inorganic porous solids, e.g. zeolites, activated 

carbons, carbon molecular sieves, MOFs, and so on, is becoming a challenging task in 

terms of efficiency and economical issues for carbon capture & storage technologies 

(CCS) [1-4]. Both the porous structure and the surface chemistry of these materials are 

critical parameters to be designed in order to achieve an optimum adsorption capacity. 

Besides achieving a high adsorption capacity, newly designed adsorbents must be able 

to separate CO2 from molecules of similar molecular dimensions as CH4 or N2 typically 

present in industrial effluents, i.e. molecular sieving properties are furthermore required. 

Among the different sorbents, carbon materials exhibit certain advantages for the 

aforementioned requirements such as high surface area, large micropore volume and, 

more importantly, the possibility to finely tailor the porous structure and surface 

chemistry accordingly by pre- and post-synthesis methods [5].  

Carbide-derived carbons (CDC), prepared by the reactive extraction of metals from 

metal carbides with chlorine, are a relatively novel kind of porous carbons with tuneable 

pore structure, which attracted particular interest in the last few years e.g. in the fields of 

electrochemistry, gas storage and catalysis [6-14]. The pore size in these materials is 

highly influenced by the carbide precursor and reactive extraction temperature. Higher 

temperatures during synthesis may allow restructuring of the carbon to a higher degree 

of graphitization and larger pores are formed [6,15,16]. At lower synthesis temperatures 

carbon molecular sieves can result, which could be of interest for the application of gas 

separation, e.g. CO2 separation in flue-gas streams.  

The behavior of these carbon materials in gas separation (e.g. CO2/N2) would be highly 

defined by their porous network, i.e. a profound knowledge of the microporous structure 
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is mandatory. A variety of methods can be used to investigate the molecular sieve 

characteristics of carbons. Mainly used are equilibrium isotherms for N2, CO2 or Ar 

sorption to obtain with a variety of methods and models (e.g. condensation models like 

BJH or molecular simulation models like QSDFT) pore volume and pore size 

distributions. The pore structure can be further analyzed by small-angle scattering 

techniques like X-ray scattering (SAXS) or neutron scattering (SANS), which allows 

also probing closed pores. For titanium carbide-derived carbon (TiC-CDC), which is 

subject of this study, sorption isotherm analysis [16-22] and scattering [16,23-25] 

results are discussed in literature, showing that TiC-CDC synthesized below 900 °C 

shows pore sizes in the range of carbon molecular sieves. Equilibrium CO2 adsorption 

isotherms demonstrated that with TiC-CDC high CO2 uptakes can be realized [26]. For 

characterizing molecular sieves for the application in gas separation, two additional 

characterization methods are of major interest as they probe directly the accessibility of 

the pore volume for molecules. This is i) immersion calorimetry with different sized 

probe molecules (equilibrium measurements) [27] and ii) adsorption uptakes measured 

in the kinetic regime despite the equilibrium regime, which allow studying additional 

kinetic effects, which can be used for gas separation. Both methods were employed 

within this work and combined with high resolution N2 and low and high pressure CO2 

isotherms, including adsorption and desorption branches, to discuss accessibility of the 

microporosity and achievable CO2/N2 and CH4/N2 selectivity when using carbide-

derived carbons as sorbents. 
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2. Experimental Section 

2.1. Synthesis of carbide-derived carbons 

Carbide-derived carbons were synthesized starting from commercial TiC powder 

(99.5 % purity, approximately 3.5 µm in diameter, Alfa Aesar GmbH & Co KG). The 

reactive extraction treatment with chlorine is described in detail elsewhere [28,29]. 

Briefly, the powders were held by a graphite crucible, which is placed in the isothermal 

zone of a horizontal tubular reactor (Al2O3, d = 3.2 cm, l = 1.3 m), lined by thin 

graphite foil. The reactor was evacuated and then heated to the desired extraction 

temperature (500, 700, 900, 1200 °C) under constant helium flow. At reaction 

temperature the reaction was started by dosing chlorine (1 mol m-3 in helium, 0.25 m s-

1). After 4 hours the extraction was stopped by purging with helium for 30 minutes. 

Afterwards, the samples were flushed for 30 minutes with a hydrogen/helium mixture 

(20 vol.-% H2) at the extraction temperature (except TiC-CDC chlorinated at 500 °C, 

which was H2 treated at 600°C) and cooled down in Helium atmosphere. Materials are 

referred to according to their synthesis temperature TiC-CDC-500, TiC-CDC-700, TiC-

CDC-900 and TiC-CDC-1200. 

2.2.  Sample characterization 

Gas adsorption measurements (N2 at -196ºC and CO2 at 0ºC) at atmospheric pressure 

were performed in a home-made fully automated equipment designed and constructed 

by the Advanced Materials group (LMA), now commercialized as N2Gsorb-6 (Gas to 

Materials Technologies; www.g2mtech.com). High-pressure analysis (in this work up to 

1 MPa) were performed in a home-made fully automated equipment designed and 

constructed by the Advanced Materials group (LMA), now commercialized as iSorbHP 
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by Quantachrome Instruments. Before any experiment, samples were degassed (10-8 

MPa) at 150ºC for 4h. Textural parameters (BET “apparent” surface area and micropore 

volume, Vmicro) were estimated from the nitrogen adsorption data after application of 

the BET and the Dubinin-Radushkevich equations, respectively. The volume of 

mesopores (Vmeso) was estimated by subtracting the micropore volume (Vmicro) to the 

total pore volume (Vt) measured at p/p0 ≈ 0.95. 

Kinetic measurements were performed at 25ºC in a glass manometric equipment using 

pure gas components (CO2, N2 and CH4). Prior to the adsorption experiment, the 

sample was degassed under vacuum (10-8 MPa) at 150ºC for 4h.   

Immersion calorimetry measurements into liquids of different molecular dimensions 

were performed in a Tian-Calved C80D calorimeter at 30ºC. A complete description of 

the experimental equipment can be found elsewhere [27]. Briefly, before the immersion 

calorimetric measurement the sample was degassed at 150ºC for 4h in a glass bulb 

connected to a vacuum equipment. After the degassing step, the sample is sealed in 

vacuum and the glass bulb is transferred to the calorimetric chamber together with the 

liquid probe. After thermal equilibrium has been reached, the sample tip is broken and 

the sample is allowed to interact with the immersion liquid. The heat evolved during 

this process (-∆Himm) is recorded with time. The surface area accessible to 

dichloromethane (SDCM) was estimated for each sample from the corresponding heat of 

immersion after calibration using a non-porous reference carbon black (V3G).  
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3. Results and Discussion 

3.1. Textural characterization 

Figure 1 shows the nitrogen adsorption/desorption isotherms for the different carbide-

derived carbons prepared using different temperatures for the chlorine treatment. As it 

can be observed, the CDC sample prepared at the lowest temperature (500ºC) exhibits a 

type I isotherm according to the IUPAC classification, characteristic of a pure 

microporous sample [28]. The presence of a narrow knee in the nitrogen isotherm at low 

relative pressures anticipates the presence of a narrow pore size distribution (PSD). An 

increase in the chlorine treatment temperature to 700ºC produces an increase in the 

amount of nitrogen adsorbed, this effect being even larger in the sample chemically 

treated at 900ºC. Additionally, sample TiC-CDC-900 exhibits a widening in the low-

pressure knee of the nitrogen isotherm, thus suggesting the formation of wider 

micropores at these high temperatures. A further increase in the chlorine treatment 

temperature above 1000ºC becomes detrimental for the textural properties, i.e. there is a 

certain collapse of the porous structure, together with the development of mesoporosity 

(see Table 1). It is well-known that temperatures above 1000ºC gives rise to the 

graphitization of the carbon structure which is accompanied by the development of 

mesoporosity and a partial collapse of the microporous network. The sudden changes in 

the porosity can be clearly reflected by the modification of the nitrogen isotherm (type 

II and IV) together with the presence of a hysteresis loop at high-relative pressures.  

Table 1 shows a compilation of the main textural properties obtained from the nitrogen 

adsorption data at -196ºC after application of the BET and the Dubinin-Radushkevich 

equations. In accordance with previous observations, an increase in the chlorine 

treatment temperature gives rise to a development of porosity, i.e. an increase in the 



8 

 

“apparent” surface area and total micropore volume up to 900ºC, the situation being 

modified thereafter. In any case, it is important to highlight that nitrogen adsorption 

measurements clearly reflect important changes in the porous structure of these carbon 

materials with the extraction temperature.  

A similar conclusion can be obtained after application of mathematical models based on 

the density-functional theory (QSDFT) to the N2 adsorption data at -196ºC. The pore 

size distribution (PSD) obtained using a slit/cylindr-shape pore model anticipates: i) the 

presence of narrow micropores (pores around 0.6-0.8 nm) on these CDC, ii) the 

presence of important changes in the microporous structure (pore size and volume) after 

an increase in the chlorine treatment temperature and iii) the development of wide 

micropores above 700ºC and mesopores above 1000ºC. The specific surface area (SSA) 

estimated using the QSDFT model (see Table 1) follows the same tendency achieved 

with the BET equation, i.e. there is an increase in the accessible surface area up to 

sample TiC-CDC-900, the SSA decreasing thereafter. 
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Figure 1.  (a) N2 adsorption/desorption isotherms at -196ºC for the different TiC-CDC 

samples; (b) pore size distribution after application of the QSDFT method to the N2 

adsorption data at -196ºC (slit/cylindr-shape pore morphology; equilibrium model).  

 

Table 1.  Textural properties for the different carbide-derived carbons obtained from the 

nitrogen adsorption data at -196ºC and immersion calorimetry into dichloromethane.  

Sample SBET / 
m2 g-1

Vmicro / 
cm3 g-1

Vmeso / 
cm3 g-1

Vt / 
cm3 g-1

SDCM / 
m2 g-1

SQSDFT / 
m2 g-1

TiC-CDC-500 1340 0.52 0.03 0.55 1461 1250

TiC-CDC-700 1490 0.58 0.04 0.62 1439 1434

TiC-CDC-900 1580 0.62 0.11 0.73 1508 1497

TiC-CDC-1200 1165 0.39 0.44 0.83 827 984
 

A powerful technique for the characterization of the textural properties of a 

porous solid is immersion calorimetry. In the absence of specific interactions at the 

liquid-solid interface, the heat of interaction of a certain liquid with the porous surface 

can be used to estimate the accessible surface area and, by selecting molecules of 



10 

 

different molecular dimensions, the pore size distribution [27]. Figure 2 shows the heat 

of immersion for three different molecules with a different kinetic diameter, i.e. 

dichloromethane (0.33 nm), 2,2-dimethylbutane (0.56 nm) and α-pynene (0.7 nm). 

Interestingly, a small molecule such as dichloromethane gives an enthalpy of immersion 

around 160-170 J g-1 for all the samples except CDC-1200 sample. As described above, 

in the absence of specific interactions at the solid-liquid interface, the heat of immersion 

can be used to estimate the surface area available for a certain molecule after the 

appropriate calibration using a reference non-porous solid with similar characteristics. 

In the case of carbide-derived carbons, the surface area accessible to dichloromethane 

after calibration using a non-porous carbon black as a reference (V3G) provides an 

estimated value around 1450-1500 m2 g-1 for all the CDC except the sample synthesized 

at high temperature. Interestingly, these values are very close to the BET surface area 

estimated from the nitrogen adsorption data at -196ºC, at least for samples 700ºC and 

900ºC, thus reflecting the validity of immersion calorimetry to estimate the textural 

properties of carbon materials. At this point it is interesting to highlight the absence of 

clear differences between the different CDC samples, as estimated from 

dichloromethane immersion calorimetry, independently of the chlorine treatment 

temperature used (excluding sample CDC-1200). This observation is somehow in 

contradiction with nitrogen adsorption measurements where a large improvement in the 

development of the microporosity was estimated after an increase in the reactive 

extraction temperature from 500ºC to 900ºC.  

Immersion calorimetry using larger molecules produce a decrease in the heat of 

interaction, hence in the accessible specific surface area, this effect being more drastic 

for sample TiC-CDC-500 where α-pynene (kinetic diameter 0.7 nm) exhibits a limited 
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accessibility, i.e. the heat of immersion being quite small. The observed results 

anticipate that sample TiC-CDC-500 is a carbon molecular sieve, i.e. molecules above 

0.7 nm will not be able to access completely the inner porosity, this molecular sieving 

behavior disappearing above 500ºC.         
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Figure 2. Heat of immersion (J g-1) for molecules of different kinetic diameter for the 

different CDC samples. Immersion liquids are dichloromethane (0.33 nm), 2,2-

dimethylbutane (0.56 nm) and α-pynene (0.7 nm).  

 

3.2. CO2 adsorption analysis at atmospheric and high pressure 

Adsorption analysis at atmospheric pressure using a slightly smaller molecule compared 

to N2 as CO2 (0.36 nm vs. 0.33 nm) and a higher adsorption temperature (0ºC vs. -

196ºC) has been proposed by some of us for the characterization of the narrow 

microporosity in porous solids (pores below 0.7 nm) [29,30]. Furthermore, CO2 

adsorption can be used to evaluate the presence of narrow constrictions usually 
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inaccessible to N2 at cryogenic temperatures [31]. Figure 3a shows the CO2 

adsorption/desorption isotherms for the different carbide-derived carbons samples at 

0ºC and atmospheric pressure. As it can be observed, even when using an equilibration 

time of 120s all isotherms exhibit a slight delay between the adsorption and the 

desorption branch, i.e. the desorption branch is not able to match perfectly the 

adsorption branch. This behavior clearly reflects the lack of real equilibrium in the 

adsorption branch even though a high equilibration time has been used during the 

performance of the isotherms, i.e. these carbide-derived carbons must contain narrow 

constrictions where CO2 exhibit problems of accessibility [32]. Taking into account 

previous analysis described in the literature, one can suspect that these narrow 

constrictions would be inaccessible to nitrogen at -196ºC [31]. As expected from the 

results described above, the adsorption capacity for CO2 increases with the chlorine 

treatment temperature up to 700ºC, the amount adsorbed decreasing thereafter. The 

decline in the adsorption capacity for sample TiC-CDC-900 would confirm the 

importance of narrow micropores in CO2 adsorption, in close agreement with the 

literature [26]. Furthermore, the delay between the adsorption and the desorption 

branches diminished with the increase in the extraction temperature (900 °C, 1200 °C), 

thus reflecting either a smaller concentration of narrow constrictions or a partial 

narrowing of the already existing microporosity, i.e. high synthesis temperatures favor 

the shrinkage of the microporous structure in such a way that narrow constrictions are 

closed or vanish on these samples chlorinated at high temperatures. During the reactive 

extraction of the carbide unsaturated carbon dangling bonds occur, when braking up the 

carbon metal bond. At higher extraction temperature the carbon could be more mobile 

before recombining, which is to a certain extend proven by the higher degree of 

graphitization for higher extraction temperatures. This higher mobility during the 
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carbide-derived carbon network formation is supposed to be responsible for the 

aforementioned described effects.        
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Figure 3. CO2 sorption isotherms up to (a) atmospheric pressure and 0ºC and (b) high 

pressure (1 MPa) and 25ºC, for the different carbide-derived carbons (equilibration time 

120s).  
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Recent analysis described in the literature has shown that carbon materials are excellent 

candidates for CO2 capture both at atmospheric and high pressure [1,2,26,33]. Taking 

into account that an optimum carbon for CO2 capture requires the presence of a well-

developed narrow microporosity (pores below 0.8 nm for atmospheric pressure studies), 

carbide-derived carbons can be anticipated as excellent candidates in terms of 

adsorption capacity and selectivity towards molecules of similar molecular dimensions. 

In this sense, Figure 3b shows the behavior of the different carbide-derived samples in 

the adsorption of CO2 up to high pressure (1 MPa) and 25ºC. Surprisingly, all samples 

except CDC-1200 perform equal in terms of adsorption capacity for CO2 at high 

pressure (see Table 2) with a maximum adsorption capacity of 480 mg g-1 at 1.0 MPa. 

Previous studies described in the literature using similar materials have shown that CO2 

adsorption capacity correlates with the total volume of specific pores depending on the 

final pressure achieved [26]. Whereas narrow micropores (<0.5 nm) are responsible for 

the adsorption capacity at 0.01 MPa, larger micropores (<0.8 nm) defines the adsorption 

capacity at atmospheric pressure. Taking into account these premises and the final 

pressure achieved in Figure 3b (1.0 MPa), which corresponds to a p/p0 ~ 0.16, these 

results suggest that samples TiC-CDC-500, TiC-CDC-700 and TiC-CDC-900 must 

exhibit a similar porous structure in terms of total micropore volume, i.e., at p/p0 ~ 0.16 

mainly all micropores must be already filled. The similarity in the adsorption isotherms 

for these three samples when using CO2 is in close agreement with calorimetric 

measurements using a molecule with a similar dimension as dichloromethane (0.33 nm). 

Apparently, these carbide-derived carbons exhibit inner cavities accessible via narrow 

constrictions which can only be surpassed either using “higher” adsorption temperatures 

(25ºC) and/or a higher pressures (1 MPa), compared to the traditional measurement at 

0ºC and atmospheric pressure. 
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Table 2. Total amount of CO2 adsorbed at atmospheric pressure and high pressureδ (1.0 

MPa) in the different carbide-derived carbons under equilibrium conditions. CO2/CH4 

and CO2/N2 selectivity derived in a kinetic regime at 25ºC and after t= 2min.    

Sample Amount
adsorbed/ 

mg g-1

Amount
adsorbedδ/ 

mg g-1

S(CO2/CH4) S(CO2/N2)

TiC-CDC-500 97 452 2.6 ∞

TiC-CDC-700 161 466 2.8 19

TiC-CDC-900 120 480 8.3 ∞

TiC-CDC-1200 49 256 ∞ ∞
 

In summary, CO2 adsorption measurements in combination with immersion calorimetry 

suggest that carbide-derived carbons prepared from TiC exhibit a similar porous 

structure independently of the chlorine treatment temperature used, at least for 

temperatures below 1000ºC. Calorimetric measurements using molecules of different 

dimensions suggest that the chlorine extraction temperature mainly affects the pore size 

opening, i.e. the pore entrance is widened after an increase in the extraction 

temperature. The presence of kinetic restrictions for CO2 adsorption at 0ºC and 

atmospheric pressure can be clearly extrapolated to a larger molecule as N2 at a lower 

adsorption temperature (-196ºC), i.e. textural characteristics obtained from the nitrogen 

adsorption isotherms (e.g. BET surface area) must be underestimated, in agreement with 

previous studies on similar materials using SANS [34,35].  

  

 

 



16 

 

3.3. Kinetic analysis of single gas adsorption (N2, CO2 and CH4)  

The adsorption kinetics of nitrogen (0.36 nm), carbon dioxide (0.33 nm) and methane 

(0.39 nm) were analyzed at 25ºC in the different carbide-derived carbons using an initial 

gas pressure of 0.07 MPa. Figure 4 shows the adsorption kinetics for the different 

carbide-derived carbons using single pure gases. In general, adsorption kinetics is fast in 

all the samples for the different probe molecules considered (95% of the total adsorption 

capacity is achieved within few seconds). As expected, carbon dioxide with the lowest 

kinetic diameter (0.33 nm) is the most adsorbed gas for all samples. In accordance with 

previous adsorption measurements the total amount of carbon dioxide adsorbed 

increases after an increase in the extraction temperature to 700ºC, the amount adsorbed 

drastically decreasing thereafter. Surprisingly, whereas nitrogen adsorption is mainly nil 

for all samples studied, a slightly larger molecule as methane (0.39 vs. 0.36 nm) is able 

to partially access the inner porous structure of the carbide-derived carbons. In any case, 

the total amount adsorbed of methane and nitrogen slightly increases for sample TiC-

CDC-700, the amount adsorbed being mainly nil for the samples synthesized above this 

temperature. The larger adsorption of methane compared to nitrogen is completely 

opposite to the typical behavior observed in the literature for carbon molecular sieves, 

which is defined based on kinetic considerations [33]. The observed behavior on the 

carbide-derived carbon molecular sieves allows for a large CO2/N2 selectivity (within 

the accuracy of the equipment ∞) compared to conventional carbon molecular sieves, 

except sample CDC-700. Concerning the CO2/CH4 selectivity, it increases with the 

increase in the chlorine treatment temperature up to an infinite value for sample CDC-

1200 although associated with a lower adsorption capacity (see Table 2).  



17 

 

In summary, adsorption kinetics anticipate that carbide-derived carbons are promising 

candidates for CO2 separation from N2 in flue gas streams at room temperature and 

atmospheric pressure with extremely high selectivity values, independently of the 

chlorine treatment temperature used. To our knowledge these are the best results 

reported in the literature, in terms of separation capacity, for CO2/N2 using carbon 

molecular sieves. 
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Figure 4. CO2, CH4 and N2 adsorption kinetics for the different carbide-derived 

carbons, (a) TiC-CDC-500, (b) TiC-CDC-700, (c) TiC-CDC-900 and (d) TiC-CDC-

1200, at 25ºC and 0.07 MPa initial pressure. 
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3.4. N2, CO2 and CH4 comparative adsorption studies at atmospheric pressure 

Finally, the adsorption capacity of the sample TiC-CDC-700 has been analyzed under 

equilibrium conditions and atmospheric pressure for CO2, N2 and CH4 at 25ºC. It is 

noteworthy to mention that under these experimental conditions, CO2 is in subcritical 

conditions whereas CH4 and N2 are in supercritical conditions. As it can be observed in 

Figure 5, equilibrium data confirm the observations described before for kinetic 

analysis, i.e. nitrogen accessibility to the inner porosity in carbide-derived carbons is 

partly inhibited. The prevalence of this behavior even under equilibrium conditions 

(120s equilibration time) clearly suggest that nitrogen accessibility is restricted not due 

to kinetic limitations but rather to other phenomena, i.e., the presence of an unexpected 

low affinity of CDC for N2. At this point is again interestingly to highlight that a 

“larger” molecule as CH4 is able to access the inner porosity whereas nitrogen does not. 

Consequently, the inaccessibility of nitrogen to the inner porous structure on these 

materials must be probably associated to specific interactions at the pore mouth with the 

nitrogen molecule, most probably associated with its quadrupole moment, which allow 

us to claim these CDC as excellent materials for the selective adsorption of CO2 on 

nitrogen rich effluents, e.g. flue-gas streams from power plants. Although grand 

canonical Monte Carlo (GCMC) simulations anticipated a weak adsorption of N2 on 

similar carbide-derived carbons [36], further analysis and/or theoretical calculations are 

required in order to fully understand the real nature of the inaccessibility or low affinity 

of nitrogen to the inner porous structure in carbide-derived carbon materials.   
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Figure 5.  CO2, CH4 and N2 sorption isotherms for sample TiC-CDC-700 at 25ºC. 

 

A final prove about the presence of narrow constrictions in these CDCs comes from the 

comparison of the CO2 adsorption isotherms for sample TiC-CDC-700 at atmospheric 

pressure and two different adsorption temperatures, i.e. 0ºC (Figure 3a) and 25ºC 

(Figure 5). Contrary to thermodynamic considerations, CO2 uptake slightly increases 

with the adsorption temperature (3.93 mmol/g at 25ºC vs. 3.72 mmol/g at 0ºC). This 

observation clearly reflects an increase in the kinetics of adsorption into the narrow 

constrictions at 25ºC. Furthermore, the presence of a larger delay between the 

adsorption and desorption branches at 25ºC clearly reflects the difficulty to attain real 

equilibrium in these narrow constrictions, inaccessible to CO2 at 0ºC, even at this 

“high” temperature.  

 

 



20 

 

Conclusions 

A series of carbide-derived carbons have been successfully prepared starting from TiC 

and using a chlorine treatment at different temperatures. N2 adsorption measurements 

suggest a real effect of the chlorine treatment temperature in the development of 

porosity, mainly microporosity, which is denied by CO2 adsorption measurements at 

high pressure and/or high temperature and calorimetric analysis. These two analyses 

suggest that the porous structure of these CDCs is mainly unaffected in terms of pore 

volume after an increase in the temperature of the chlorine treatment (except samples 

treated above 1000ºC), i.e. the textural properties estimated from nitrogen adsorption 

must be underestimated. Furthermore, gas separation analysis shows that these CDCs 

are excellent materials for the complex CO2 separation from N2, i.e. nitrogen 

accessibility at room temperature and atmospheric pressure is inhibited compared to 

larger molecules (e.g. CH4) probably due to specific interactions at the pore mouth.      
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Figure 1.  (a) N2 adsorption/desorption isotherms at -196ºC for the different TiC-CDC 

samples; (b) pore size distribution after application of the QSDFT method to the N2 

adsorption data at -196ºC (slit/cylindr-shape pore morphology; equilibrium model).  

Figure 2. Heat of immersion (J g-1) for molecules of different kinetic diameter for the 

different CDC samples. Immersion liquids are dichloromethane (0.33 nm), 2,2-

dimethylbutane (0.56 nm) and α-pynene (0.7 nm).  

Figure 3.  CO2 sorption isotherms up to (a) atmospheric pressure and 0ºC and (b) high 

pressure (1 MPa) and 25ºC, for the different carbide-derived carbons (equilibration time 

300s).  

Figure 4.  CO2, CH4 and N2 adsorption kinetics for the different carbide-derived 

carbons, (a) TiC-CDC-500, (b) TiC-CDC-700, (c) TiC-CDC-900 and (d) TiC-CDC-

1200, at 25ºC and 0.07 MPa initial pressure. 

Figure 5.  CO2, CH4 and N2 sorption isotherms for sample TiC-CDC-700 at 25ºC. 
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Table 1.  Textural properties for the different carbide-derived carbons obtained from the 

nitrogen adsorption data at -196ºC and immersion calorimetry into dichloromethane.  

Table 2.  Total amount of CO2 adsorbed at atmospheric pressure and high pressureδ 

(1.0 MPa) in the different carbide-derived carbons under equilibrium conditions. 

CO2/CH4 and CO2/N2 selectivity derived in a kinetic regime at 25ºC and after t= 2min. 


