124 research outputs found

    Upwind sail aerodynamics: A RANS numerical investigation validated with wind tunnel pressure measurements

    Get PDF
    A novel method similar to marching technique was used to model wind tunnel tests. ► Sail trim criteria based on their interactive effect are identified. ► Areas of separated flow were characterised. ► Local flow field was correlated with sail surface pressures. ► An aerodynamic model based on potential flow with viscous correction is proposed.The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using Computational Fluid Dynamics. A Reynolds-averaged Navier-Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where thepressure distributions on the sails were measured. An original approach was employed byusing two successive simulations: the first one on a large domain to model the blockage due to the wind tunnel walls and the sails model, and a second one on a smaller domain to model the flow around the sails model. A verification and validation of the computed aerodynamic forces and pressure distributions was performed. The computed pressure distribution is shown to agree well with the measured pressures. The sail surface pressure was correlated with the increase of turbulent viscosity in the laminar separation bubble, the flow reattachment and the trailing edge separation. The drive force distribution on both sails showed that the fore part of the genoa (fore sail) provides the majority of the drive force and that the effect of the aft sail is mostly to produce an upwash effect on the genoa. An aerodynamic model based on potential flow theory and a viscous correction is proposed. This model, with one free parameter to be determined, is shown to fit the results better than the usual form drag and induced drag only, even if no friction drag is explicitly considered.the third author received a financial support from Brest Métropole Océane and the ERASMUS scholarshi

    Sails trim optimisation using CFD and RBF mesh morphing

    Get PDF
    The study is focused on the use of mesh morphing to explore different trims of yachts sails. In particular, four trims of the fore and aft sail of a model-scale sailing yacht were modelled leading to 16 configurations in total. Sail pressure distributions were validated with wind-tunnel measurements for all the 16 configurations, and full verification and validation was performed for one of these conditions. The 16 configurations were modelled with two different approaches: generating a new mesh for each trim condition (standard method) and using a morphed version of the baseline condition. This second novel method, based on the use of radial basis functions to morph the mesh, allows the computational time of exploring different geometries with computational fluid dynamics to be significantly decreased. Good agreement is observed between the pressure distributions computed with new meshes and morphed meshes. In order to show an example of trim optimisation, a metamodel approach is defined for the estimation of the response surface using radial basis function interpolation in the parameter space. Thanks to the continuum nature of morphing approach, the optimal trim angles for the given flow condition could be verified using new full computational fluid dynamic simulations. The original full factorial map of 16 points was replaced with a new map of 9 points with an optimal space filling approach to understand the faithfulness of a reduced metamodel. In both cases optimal point is evaluated using a fine design of experiment table built using the metamodel (41 levels for each parameter). The maximum thrust is achieved at the same trim for both metamodels. Proposed method can be easily extended to a wide number of parameters. Such flexibility is demonstrated in the present paper showing the sensitivity of results with respect to apparent wind angle and heeling angle

    Improvement of performance of InAs quantum dot solar cell by inserting thin AlAs layers

    Get PDF
    A new measure to enhance the performance of InAs quantum dot solar cell is proposed and measured. One monolayer AlAs is deposited on top of InAs quantum dots (QDs) in multistack solar cells. The devices were fabricated by molecular beam epitaxy. In situ annealing was intended to tune the QD density. A set of four samples were compared: InAs QDs without in situ annealing with and without AlAs cap layer and InAs QDs in situ annealed with and without AlAs cap layer. Atomic force microscopy measurements show that when in situ annealing of QDs without AlAs capping layers is investigated, holes and dashes are present on the device surface, while capping with one monolayer AlAs improves the device surface. On unannealed samples, capping the QDs with one monolayer of AlAs improves the spectral response, the open-circuit voltage and the fill factor. On annealed samples, capping has little effect on the spectral response but reduces the short-circuit current, while increasing the open-circuit voltage, the fill factor and power conversion efficiency
    • …
    corecore