108 research outputs found

    Tracing Water Sources and Fluxes in a Dynamic Tropical Environment: From Observations to Modeling

    Get PDF
    Código de proyecto: Isotope Network for Tropical Ecosystem Studies (ISONet). Producción relacionada con el Observatorio del Agua y Cambio Global (OACG).Tropical regions cover approximately 36% of the Earth’s landmass. These regions are home to 40% of the world’s population, which is projected to increase to over 50% by 2030 under a remarkable climate variability scenario often exacerbated by El Niño Southern Oscillation (ENSO) and other climate teleconnections. In the tropics, ecohydrological conditions are typically under the influence of complex land-ocean-atmosphere interactions that produce a dynamic cycling of mass and energy reflected in a clear partition of water fluxes. Here, we present a review of 7 years of a concerted and continuous water stable isotope monitoring across Costa Rica, including key insights learned, main methodological advances and limitations (both in experimental designs and data analysis), potential data gaps, and future research opportunities with a humid tropical perspective. The uniqueness of the geographic location of Costa Rica within the mountainous Central America Isthmus, receiving moisture inputs from the Caribbean Sea (windward) and the Pacific Ocean (complex leeward topography), and experiencing strong ENSO events, poses a clear advantage for the use of isotopic variations to underpin key drivers in ecohydrological responses. In a sequential approach, isotopic variations are analyzed from moisture transport, rainfall generation, and groundwater/surface connectivity to Bayesian and rainfall-runoff modeling. The overarching goal of this review is to provide a robust humid tropical example with a progressive escalation from common water isotope observations to more complex modeling outputs and applications to enhance water resource management in the tropics.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI)UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de FísicaUCR::Vicerrectoría de Docencia::Ciencias Sociales::Facultad de Ciencias Sociales::Escuela de Geografí

    Developing allometric models to predict the individual aboveground biomass of shrubs worldwide

    Get PDF
    Existing global models to predict standing biomass are based on trees characterized by a single principal stem, well developed in height. However, their use in open woodlands and shrublands, characterized by multistemmed species with substantial crown development, generates a high level of uncertainty in biomass estimates. This limitation led us to (a) develop global models of shrub individual aboveground biomass based on simple allometric variables, (b) to compare the fit of these models with existing global biomass models, and (c) to assess whether models fit change when bioclimatic variables are considered. Location: Global. Time period: Present. Major taxa studied: 118 species of shrubs. Methods: We compile a database of 3,243 individuals across 49 sites distributed worldwide. Including stem basal diameter, height and crown diameter as predictor variables, we built potential models and compared their fit using generalized least squares. We used mixed effects models to determine if bioclimatic variables improved the accuracy of biomass models. Results: Although the most important variable in terms of predictive capacity was stem basal diameter, crown diameter significantly improved the models? fit, followed by height. Four models were finally chosen, with the best model combining all these variables in the same equation [R 2 = 0.930, root mean square error (RMSE) = 0.476]. Selected models performed as well as established global biomass models. Including the individual bioform significantly improved the models? fit. Main conclusions: Stem basal diameter, crown diameter and height measures could be combined to provide robust aboveground biomass (AGB) estimates of individual shrub species. Our study supplements well-established models developed for trees, allowing more accurate biomass estimation of multistemmed woody individuals. We further provide tools for a methodological standardization of individual biomass quantification in these species. We expect these results contribute to improve the quality of biomass estimates across ecosystems, but also to generate methodological consensus on field biomass assessments in shrubs.Fil: Conti, Georgina. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Gorne, Lucas Damián. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Zeballos, Sebastián Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Lipoma, Maria Lucrecia. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Gatica, G.. Universidad Nacional de San Juan; ArgentinaFil: Kowaljow, Esteban. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Whitworth Hulse, Juan Ignacio. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Cuchietti, Anibal. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Poca, María. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Pestoni, Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Fernandes, P. M.. Universidade de Trás‐os‐Montes e Alto Douro; Portuga

    Non-invasive estimation of intracranial pressure by diffuse optics: a proof-of-concept study

    Get PDF
    Intracranial pressure (ICP) is an important parameter to monitor in several neuropathologies. However, because current clinically accepted methods are invasive, its monitoring is limited to patients in critical conditions. On the other hand, there are other less critical conditions for which ICP monitoring could still be useful; therefore, there is a need to develop non-invasive methods. We propose a new method to estimate ICP based on the analysis of the non-invasive measurement of pulsatile, microvascular cerebral blood flow with diffuse correlation spectroscopy. This is achieved by training a recurrent neural network using only the cerebral blood flow as the input. The method is validated using a 50% split sample method using the data from a proof-of-concept study. The study involved a population of infants (n = 6) with external hydrocephalus (initially diagnosed as benign enlargement of subarachnoid spaces) as well as a population of adults (n = 6) with traumatic brain injury. The algorithm was applied to each cohort individually to obtain a model and an ICP estimate. In both diverse cohorts, the non-invasive estimation of ICP was achieved with an accuracy of 0.9) and good concordance (Lin's concordance correlation coefficient >0.9) in comparison with standard clinical, invasive ICP monitoring. This preliminary work paves the way for further investigations of this tool for the non-invasive, bedside assessment of ICP.This work leading to the results was funded by the European Union’s Horizon 2020 project “BitMap: Brain injury and trauma monitoring using advanced photonics” (No. 675332); Fundació CELLEX Barcelona; Ministerio de Economía y Competitividad /FEDER (PHOTODEMENTIA, DPI2015-64358-C2-1-R); Instituto de Salud Carlos III / FEDER (MEDPHOTAGE, DTS16/00087 and PI18/00468); the “Severo Ochoa” Programme for Centers of Excellence in R&D (SEV-2015-0522); the Obra social “laCaixa” Foundation (LlumMedBcn); Institució CERCA, AGAUR-Generalitat (2017 SGR 1380); LASERLAB-EUROPE IV; KidsBrainIT (ERA-NET NEURON) and la Fundació La Marató de TV3 (201709.31 and 201724.31).Peer ReviewedPostprint (author's final draft

    Comparison of cerebral metabolic rate of oxygen, blood flow, and bispectral index under general anesthesia

    Get PDF
    Cerebral blood flow; Diffuse optics; Propofol-induced anesthesiaFlujo sanguíneo cerebral; Óptica difusa; Anestesia inducida por propofolFlux sanguini cerebral; Òptica difusa; Anestèsia induïda per propofolSignificance The optical measurement of cerebral oxygen metabolism was evaluated. Aim Compare optically derived cerebral signals to the electroencephalographic bispectral index (BIS) sensors to monitor propofol-induced anesthesia during surgery. Approach Relative cerebral metabolic rate of oxygen (rCMRO2) and blood flow (rCBF) were measured by time-resolved and diffuse correlation spectroscopies. Changes were tested against the relative BIS (rBIS) ones. The synchronism in the changes was also assessed by the R-Pearson correlation. Results In 23 measurements, optically derived signals showed significant changes in agreement with rBIS: during propofol induction, rBIS decreased by 67% [interquartile ranges (IQR) 62% to 71%], rCMRO2 by 33% (IQR 18% to 46%), and rCBF by 28% (IQR 10% to 37%). During recovery, a significant increase was observed for rBIS (48%, IQR 38% to 55%), rCMRO2 (29%, IQR 17% to 39%), and rCBF (30%, IQR 10% to 44%). The significance and direction of the changes subject-by-subject were tested: the coupling between the rBIS, rCMRO2, and rCBF was witnessed in the majority of the cases (14/18 and 12/18 for rCBF and 19/21 and 13/18 for rCMRO2 in the initial and final part, respectively). These changes were also correlated in time (R > 0.69 to R = 1, p-values < 0.05). Conclusions Optics can reliably monitor rCMRO2 in such conditions.This work received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 675332 (BitMap), No. 101016087 (VASCOVID) and No. 101017113 (TinyBRAINS), KidsBrainIT (ERA-NET NEURON), FEDER EC and LASERLAB-EUROPE V (EC H2020 no. 871124). It was also supported by Fundació CELLEX Barcelona, Fundació Mir-Puig the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0522), the Obra social “la Caixa” Foundation (LlumMedBcn), Generalitat de Catalunya (CERCA, AGAUR-2017-SGR-1380, RIS3CAT-001-P-001682 CECH), la Fundació La Marató de TV3 (201724.31 and 201709.31), and by Agencia Estatal de Investigación (PHOTOMETABO, PID2019-106481RB-C31/10.13039/501100011033)

    Cerebrospinal fluid markers before and after shunting in patients with secondary and idiopathic normal pressure hydrocephalus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to explore biochemical changes in the cerebrospinal fluid (CSF) induced by shunt surgery and the relationship between these changes and clinical improvement.</p> <p>Methods</p> <p>We measured clinical symptoms and analysed lumbar CSF for protein content, neurodegeneration and neurotransmission markers in patients with secondary (SNPH, n = 17) and idiopathic NPH (INPH, n = 18) before and 3 months after shunt surgery. Patients were divided into groups according to whether or not there was improvement in clinical symptoms after surgery.</p> <p>Results</p> <p>Preoperatively, the only pathological findings were elevated neurofilament protein (NFL), significantly more so in the SNPH patients than in the INPH patients, and elevated albumin content. Higher levels of NFL correlated with worse gait, balance, wakefulness and neuropsychological performance. Preoperatively, no differences were seen in any of the CSF biomarkers between patients that improved after surgery and those that did not improve. Postoperatively, a greater improvement in gait and balance performance correlated with a more pronounced reduction in NFL. Levels of albumin, albumin ratio, neuropeptide Y, vasoactive intestinal peptide and ganglioside GD3 increased significantly after shunting in both groups. In addition, Gamma amino butyric acid increased significantly in SNPH and tau in INPH.</p> <p>Conclusion</p> <p>We conclude that a number of biochemical changes occur after shunt surgery, but there are no marked differences between the SNPH and INPH patients. The results indicate that NFL may be a marker that can predict a surgically reversible state in NPH.</p

    In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study

    Get PDF
    Traumatic brain injury causes diffuse axonal injury and loss of cortical neurons. These features are well recognized histologically, but their in vivo monitoring remains challenging. In vivo cortical microdialysis samples the extracellular fluid adjacent to neurons and axons. Here, we describe a novel neuronal proteolytic pathway and demonstrate the exclusive neuro-axonal expression of Pavlov’s enterokinase. Enterokinase is membrane bound and cleaves the neurofilament heavy chain at positions 476 and 986. Using a 100 kDa microdialysis cut-off membrane the two proteolytic breakdown products, extracellular fluid neurofilament heavy chains NfH476−986 and NfH476−1026, can be quantified with a relative recovery of 20%. In a prospective clinical in vivo study, we included 10 patients with traumatic brain injury with a median Glasgow Coma Score of 9, providing 640 cortical extracellular fluid samples for longitudinal data analysis. Following high-velocity impact traumatic brain injury, microdialysate extracellular fluid neurofilament heavy chain levels were significantly higher (6.18 ± 2.94 ng/ml) and detectable for longer (>4 days) compared with traumatic brain injury secondary to falls (0.84 ± 1.77 ng/ml, <2 days). During the initial 16 h following traumatic brain injury, strong correlations were found between extracellular fluid neurofilament heavy chain levels and physiological parameters (systemic blood pressure, anaerobic cerebral metabolism, excessive brain tissue oxygenation, elevated brain temperature). Finally, extracellular fluid neurofilament heavy chain levels were of prognostic value, predicting mortality with an odds ratio of 7.68 (confidence interval 2.15–27.46, P = 0.001). In conclusion, this study describes the discovery of Pavlov’s enterokinase in the human brain, a novel neuronal proteolytic pathway that gives rise to specific protein biomarkers (NfH476−986 and NfH476−1026) applicable to in vivo monitoring of diffuse axonal injury and neuronal loss in traumatic brain injury

    Brain death and postmortem organ donation: Report of a questionnaire from the CENTER-TBI study

    Get PDF
    Background: We aimed to investigate the extent of the agreement on practices around brain death and postmortem organ donation. Methods: Investigators from 67 Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study centers completed several questionnaires (response rate: 99%). Results: Regarding practices around brain death, we found agreement on the clinical evaluation (prerequisites and neurological assessment) for brain death determination (BDD) in 100% of the centers. However, ancillary tests were required for BDD in 64% of the centers. BDD for nondonor patients was deemed mandatory in 18% of the centers before withdrawing life-sustaining measures (LSM). Also, practices around postmortem organ donation varied. Organ donation after circulatory arrest was forbidden in 45% of the centers. When withdrawal of LSM was contemplated, in 67% of centers the patients with a ventricular drain in situ had this removed, either sometimes or all of the time. Conclusions: This study showed both agreement and some regional differences regarding practices around brain death and postmortem organ donation. We hope our results help quantify and understand potential differences, and provide impetus for current dialogs toward further harmonization of practices around brain death and postmortem organ donation

    Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

    Get PDF
    This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces
    corecore